第四课:马氏链的状态分类

本文详细介绍了马氏链的状态分类,包括可达与互通的概念,本质状态的定义,不可约马氏链的性质。此外,还讨论了周期性、常返与非常返状态的区分,以及它们之间的关系。通过对马氏链状态的深入理解,有助于更好地分析随机过程。
摘要由CSDN通过智能技术生成

第四课:马氏链的状态分类


以下总设马氏链 X = { X n : n ≥ 0 } X=\{X_n:n\ge0\} X={ Xn:n0}的转移概率矩阵 P = ( p i j ) i , j ∈ S P=(p_{ij})_{i,j\in S} P=(pij)i,jS.
为方便,分别记 E ( . ∣ X 0 = i ) 和 P ( . ∣ X 0 = i ) E(.|X_0=i)和P(.|X_0=i) E(.X0=i)P(.X0=i) E i ( . ) 和 P i ( . ) E_i(.)和P_{i}(.) Ei(.)Pi(.).

一.互通、本质、不可约

(1)可达与互通

定义1: 设 i , j ∈ S i,j\in S i,jS,若 ∃ n ∈ N \exist n \in \N nN,使得 p i j ( n ) > 0 p_{ij}^{(n)}>0 pij(n)>0, 则称 i i i可达 j j j,记作 i → j i\to j ij.(否则 i ↛ j i\nrightarrow j ij
进一步,若 i → j i\to j ij,且 j → i j\to i ji,则称 i i i j j j互通,记作 i ↔ j i \leftrightarrow j ij.

: n ∈ N n\in \N nN,是可以取值0的,也就是 i i i与自身是可达的,也是互通的!

命题1:若 i → j i\to j ij, j → k j\to k jk,则 i → k i\to k ik
Proof. 根据可达的定义,由 i → j , j → k i\to j,j\to k ij,jk知, ∃ n , m ∈ N \exist n,m\in \N n,mN,使得 p i j ( n ) > 0 , p j k ( m ) > 0 p_{ij}^{(n)}>0,p_{jk}^{(m)}>0 pij(n)>0,pjk(m)>0
从而由C-K方程知 p i k ( m + n ) = ∑ l ∈ S p i l ( n ) p l k ( m ) ≥ p i j ( n ) p j k ( m ) > 0 p_{ik}^{(m+n)}=\sum_{l\in S} p_{il}^{(n)}p_{lk}^{(m)}\ge p_{ij}^{(n)}p_{jk}^{(m)}>0 pik(m+n)=lSpil(n)plk(m)pij(n)pjk(m)>0
从而 i → k i\to k ik

命题1推论: 互通( ↔ \leftrightarrow ) 是一种等价关系(自反,对称,传递)

定义2: 对 ∀ i ∈ S \forall i \in S iS, 称 C ( i ) = { k ∈ S : i ↔ k } C(i)=\{k\in S:i\leftrightarrow k \} C(i)={ kS:ik}为包含状态 i i i的互通类.

命题2: 对 ∀ i , j ∈ S \forall i,j \in S i,jS,有 C ( i ) ∩ C ( j ) ≠ ∅ C(i)\cap C(j)\neq \empty C(i)C(j)= ⇔ \Leftrightarrow C ( i ) = C ( j ) C(i)=C(j) C(i)=C(j)
Proof. 先证 ⇐ \Leftarrow 方向:
因为 C ( i ) = C ( j ) C(i)=C(j) C(i)=C(j),所以 C ( i ) ∩ C ( j ) = C ( i ) ⊇ { i } ≠ ∅ C(i)\cap C(j)=C(i)\supseteq \{i\}\neq \empty C(i)C(j)=C(i){ i}=
再证 ⇒ \Rightarrow
(思路是分别证明 C ( i ) ⊆ C ( j ) C(i)\subseteq C(j) C(i)C(j) C ( j ) ⊆ C ( i ) C(j)\subseteq C(i) C(j)C(i))

C ( i ) ∩ C ( j ) ≠ ∅ C(i)\cap C(j)\neq \empty C(i)C(j)=
所以可取 k ∈ C ( i ) ∩ C ( j ) k\in C(i)\cap C(j) kC(i)C(j), ∀ l ∈ C ( i ) \forall l\in C(i) lC(i),由条件可知 l ↔ i l\leftrightarrow i li, k ↔ i k\leftrightarrow i ki, k ↔ j k\leftrightarrow j kj 所以 l ↔ j l\leftrightarrow j lj,从而 l ∈ C ( j ) l\in C(j) lC(j),即 C ( i ) ⊆ C ( j ) C(i)\subseteq C(j) C(i)C(j)
同理可证 C ( j ) ⊆ C ( i ) C(j)\subseteq C(i) C(j)C(i)
综上, C ( i ) = C ( j ) C(i)=C(j) C(i)=C(j)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值