第四课:马氏链的状态分类
以下总设马氏链 X = { X n : n ≥ 0 } X=\{X_n:n\ge0\} X={
Xn:n≥0}的转移概率矩阵 P = ( p i j ) i , j ∈ S P=(p_{ij})_{i,j\in S} P=(pij)i,j∈S.
为方便,分别记 E ( . ∣ X 0 = i ) 和 P ( . ∣ X 0 = i ) E(.|X_0=i)和P(.|X_0=i) E(.∣X0=i)和P(.∣X0=i)为 E i ( . ) 和 P i ( . ) E_i(.)和P_{i}(.) Ei(.)和Pi(.).
一.互通、本质、不可约
(1)可达与互通
定义1: 设 i , j ∈ S i,j\in S i,j∈S,若 ∃ n ∈ N \exist n \in \N ∃n∈N,使得 p i j ( n ) > 0 p_{ij}^{(n)}>0 pij(n)>0, 则称 i i i可达 j j j,记作 i → j i\to j i→j.(否则 i ↛ j i\nrightarrow j i↛j)
进一步,若 i → j i\to j i→j,且 j → i j\to i j→i,则称 i i i与 j j j互通,记作 i ↔ j i \leftrightarrow j i↔j.
注: n ∈ N n\in \N n∈N,是可以取值0的,也就是 i i i与自身是可达的,也是互通的!
命题1:若 i → j i\to j i→j, j → k j\to k j→k,则 i → k i\to k i→k
Proof. 根据可达的定义,由 i → j , j → k i\to j,j\to k i→j,j→k知, ∃ n , m ∈ N \exist n,m\in \N ∃n,m∈N,使得 p i j ( n ) > 0 , p j k ( m ) > 0 p_{ij}^{(n)}>0,p_{jk}^{(m)}>0 pij(n)>0,pjk(m)>0
从而由C-K方程知 p i k ( m + n ) = ∑ l ∈ S p i l ( n ) p l k ( m ) ≥ p i j ( n ) p j k ( m ) > 0 p_{ik}^{(m+n)}=\sum_{l\in S} p_{il}^{(n)}p_{lk}^{(m)}\ge p_{ij}^{(n)}p_{jk}^{(m)}>0 pik(m+n)=∑l∈Spil(n)plk(m)≥pij(n)pjk(m)>0
从而 i → k i\to k i→k
命题1推论: 互通( ↔ \leftrightarrow ↔) 是一种等价关系(自反,对称,传递)
定义2: 对 ∀ i ∈ S \forall i \in S ∀i∈S, 称 C ( i ) = { k ∈ S : i ↔ k } C(i)=\{k\in S:i\leftrightarrow k \} C(i)={ k∈S:i↔k}为包含状态 i i i的互通类.
命题2: 对 ∀ i , j ∈ S \forall i,j \in S ∀i,j∈S,有 C ( i ) ∩ C ( j ) ≠ ∅ C(i)\cap C(j)\neq \empty C(i)∩C(j)=∅ ⇔ \Leftrightarrow ⇔ C ( i ) = C ( j ) C(i)=C(j) C(i)=C(j)
Proof. 先证 ⇐ \Leftarrow ⇐方向:
因为 C ( i ) = C ( j ) C(i)=C(j) C(i)=C(j),所以 C ( i ) ∩ C ( j ) = C ( i ) ⊇ { i } ≠ ∅ C(i)\cap C(j)=C(i)\supseteq \{i\}\neq \empty C(i)∩C(j)=C(i)⊇{ i}=∅
再证 ⇒ \Rightarrow ⇒ :
(思路是分别证明 C ( i ) ⊆ C ( j ) C(i)\subseteq C(j) C(i)⊆C(j) 和 C ( j ) ⊆ C ( i ) C(j)\subseteq C(i) C(j)⊆C(i))因 C ( i ) ∩ C ( j ) ≠ ∅ C(i)\cap C(j)\neq \empty C(i)∩C(j)=∅
所以可取 k ∈ C ( i ) ∩ C ( j ) k\in C(i)\cap C(j) k∈C(i)∩C(j), ∀ l ∈ C ( i ) \forall l\in C(i) ∀l∈C(i),由条件可知 l ↔ i l\leftrightarrow i l↔i, k ↔ i k\leftrightarrow i k↔i, k ↔ j k\leftrightarrow j k↔j 所以 l ↔ j l\leftrightarrow j l↔j,从而 l ∈ C ( j ) l\in C(j) l∈C(j),即 C ( i ) ⊆ C ( j ) C(i)\subseteq C(j) C(i)⊆C(j)
同理可证 C ( j ) ⊆ C ( i ) C(j)\subseteq C(i) C(j)⊆C(i)
综上, C ( i ) = C ( j ) C(i)=C(j) C(i)=C(j)