大样本理论第二课: Preliminary tools and foundations

1.Modes of Convergence

(1).Convergence in Probability

Definition (Convergence in Probability)
Let X 1 , X 2 , . . . X_1,X_2,... X1,X2,... and X X X be random variables on a probability space ( Ω , F , P ) (\Omega,\mathcal{F},P) (Ω,F,P).
We say X n X_n Xn convergence in probability to X X X if
P ( ∣ X n − X ∣ > ϵ ) → 0 , every  ϵ > 0 P(|X_n-X|>\epsilon)\to 0,\text{every}\text{ } \epsilon>0 P(XnX>ϵ)0,every ϵ>0
as n → ∞ n\to \infin n

常记为 X n → P X , n → ∞ X_n \stackrel{P}{\rightarrow} X,n\to \infin XnPX,n

扩展(多元随机变量的依概率收敛) 对于随机的 p p p维随机向量for random p-vectors X 1 , X 2 , . . . and  X \mathbf{X_1,X_2},...\text{and}\text{ }\mathbf{X} X1,X2,...and X , we say that X n → P X \mathbf{X}_n \stackrel{P}{\rightarrow}\mathbf{X} XnPX

EX: X n → P X \mathbf{X}_n \stackrel{P}{\rightarrow}\mathbf{X} XnPX 当且仅当分量是依概率收敛的 .

Proof. 依据定义证明
如果 X n → P X \mathbf{X}_n \stackrel{P}{\rightarrow}\mathbf{X} XnPX,那么 ∀ ϵ > 0 , P ( ∣ X n − X ∣ > ϵ ) → 0 , n → ∞ \forall \epsilon>0, P(|\mathbf{X_n-X}|>\epsilon)\to 0,n\to \infin ϵ>0,P(XnX>ϵ)0,n
P ( ∣ X n 1 − X 1 ∣ 2 + . . . + ∣ X n p − X p ∣ 2 > ϵ ) → 0 , n → ∞ P(\sqrt{|X_{n_1}-X_1|^2+...+|X_{n_p}-X_p|^2}>\epsilon)\to 0,n\to \infin P(Xn1X12+...+XnpXp2 >ϵ)0,n
也即 P ( ∣ X n 1 − X 1 ∣ 2 + . . . + ∣ X n p − X p ∣ 2 ≤ ϵ ) → 1 , n → ∞ P(\sqrt{|X_{n_1}-X_1|^2+...+|X_{n_p}-X_p|^2}\le \epsilon)\to 1,n\to \infin P(Xn1X12+...+XnpXp2 ϵ)1,n
注意到下述关系:
∀ i , ∣ X n i − X i ∣ 2 ≤ ∣ X n 1 − X 1 ∣ 2 + . . . + ∣ X n p − X p ∣ 2 ≤ ϵ \forall i,\sqrt{|X_{n_i}-X_i|^2}\le \sqrt{|X_{n_1}-X_1|^2+...+|X_{n_p}-X_p|^2}\le\epsilon i,XniXi2 Xn1X12+...+XnpXp2 ϵ
所以,若 n → ∞ n\to \infin n 时, 分 量 和 ≤ ϵ \textcolor{red}{分量和\le \epsilon} ϵ 的概率趋向1,那么任意一个分量≤ ϵ \epsilon ϵ自然也是趋于1的.
如果 ∀ i , X n i → P X i \forall i,X_{ni}\stackrel{P}{\rightarrow}X_i i,XniPXi ,那么 ∀ ϵ > 0 \forall \epsilon>0 ϵ>0, P ( ( X n i − X i ) 2 > ϵ 2 p ) → 0 P((X_{ni}-X_i)^2> \frac{\epsilon^2}{p})\to 0 P((XniXi)2>pϵ2)0
注意到: { ∣ X n 1 − X 1 ∣ 2 + . . . + ∣ X n p − X p ∣ 2 > ϵ } \{\sqrt{|X_{n_1}-X_1|^2+...+|X_{n_p}-X_p|^2}>\epsilon\} { Xn1X12+...+XnpXp2 >ϵ}这个事件成立一定能推出 { ∃ i , ( X n i − X i ) 2 > ϵ 2 p } \{\exist i,(X_{ni}-X_i)^2>\frac{\epsilon^2}{p}\} { i,(XniXi)2>pϵ2},而 P ( { ∃ i , ( X n i − X i ) 2 > ϵ 2 p } ) ≤ ∑ i P ( ( X n i − X i ) 2 > ϵ 2 p ) → 0 P(\{\exist i,(X_{ni}-X_i)^2>\frac{\epsilon^2}{p}\})\le \sum_i P((X_{ni}-X_i)^2>\frac{\epsilon^2}{p})\to 0 P({ i,(XniXi)2>pϵ2})iP((XniXi)2>pϵ2)0,所以 P ( { ∣ X n 1 − X 1 ∣ 2 + . . . + ∣ X n p − X p ∣ 2 > ϵ } ) → 0 P(\{\sqrt{|X_{n_1}-X_1|^2+...+|X_{n_p}-X_p|^2}>\epsilon\})\to 0 P({ Xn1X12+...+XnpXp2 >ϵ})0

Example1: For i.i.d. Bernoulli trials with a success probability p = 1 / 2 p = 1/2 p=1/2, let T n T_n Tn denote
the number of times in the first n n n trials that a success is followed by a
failure. Show that T n / n → P 1 / 4 T_n/n\stackrel{P}{\rightarrow} 1/4 Tn/nP1/4.

Proof. 目标是证明 ∀ ϵ > 0 , P ( ∣ T n / n − 1 / 4 ∣ > ϵ ) → 0 \forall \epsilon>0,P(|T_n/n-1/4|>\epsilon)\to 0 ϵ>0,P(Tn/n1/4>ϵ)0
技巧:利用Markov不等式: For any t > 0 , P ( Z > t ) ≤ E [ Z ] t t>0,P(Z>t)\le \frac{E[Z]}{t} t>0,P(Z>t)tE[Z],Where Z Z Z is a positive r.v.
P ( ∣ T n / n − 1 / 4 ∣ > ϵ ) = P ( ( T n / n − 1 / 4 ) 2 > ϵ 2 ) ≤ E ( T n / n − 1 / 4 ) 2 ϵ 2 P(|T_n/n-1/4|>\epsilon)=P((T_n/n-1/4)^2>\epsilon^2) \le \frac{E(T_n/n-1/4)^2}{\epsilon^2} P(Tn/n1/4>ϵ)=P((Tn/n1/4)2>ϵ2)ϵ2E(Tn/n1/4)2
下面就只需要证明 E ( T n / n − 1 / 4 ) 2 → 0 , n → ∞ E(T_n/n-1/4)^2\to 0,n\to \infin E(Tn/n1/4)20,n就可以了:
E [ ( T n / n − 1 / 4 ) 2 ] = E [ T n 2 / n 2 − E [ T n / ( 2 n ) ] + 1 / 16 E[(T_n/n-1/4)^2]=E[T_n^2/n^2-E[T_n/(2n)]+1/16 E[(Tn/n1/4)2]=E[Tn2/n2E[Tn/(2n)]+1/16
X i = 1 { 第 i 次 成 功 , 但 是 第 i + 1 次 失 败 } X_i=1_{\{第i次成功,但是第i+1次失败\}} Xi=1{ i,i+1}, 可知 T n = ∑ i = 1 n − 1 X i T_n=\sum_{i=1}^{n-1}X_i Tn=i=1n1Xi 【这一步是想将 T n T_n Tn写成随机变量和的形式】
注意到: X i X_i Xi其实就是两点分布,取值1的概率是1/4,取值0的概率是3/4.
E ( T n ) = ∑ i = 1 n − 1 E ( X i ) = n − 1 4 E(T_n)=\sum_{i=1}^{n-1}E(X_i)=\frac{n-1}{4} E(Tn)=i=1n1E(Xi)=4n−</

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
SQLAlchemy 是一个 SQL 工具包和对象关系映射(ORM)库,用于 Python 编程语言。它提供了一个高级的 SQL 工具和对象关系映射工具,允许开发者以 Python 类和对象的形式操作数据库,而无需编写大量的 SQL 语句。SQLAlchemy 建立在 DBAPI 之上,支持多种数据库后端,如 SQLite, MySQL, PostgreSQL 等。 SQLAlchemy 的核心功能: 对象关系映射(ORM): SQLAlchemy 允许开发者使用 Python 类来表示数据库表,使用类的实例表示表中的行。 开发者可以定义类之间的关系(如一对多、多对多),SQLAlchemy 会自动处理这些关系在数据库中的映射。 通过 ORM,开发者可以像操作 Python 对象一样操作数据库,这大大简化了数据库操作的复杂性。 表达式语言: SQLAlchemy 提供了一个丰富的 SQL 表达式语言,允许开发者以 Python 表达式的方式编写复杂的 SQL 查询。 表达式语言提供了对 SQL 语句的灵活控制,同时保持了代码的可读性和可维护性。 数据库引擎和连接池: SQLAlchemy 支持多种数据库后端,并且为每种后端提供了对应的数据库引擎。 它还提供了连接池管理功能,以优化数据库连接的创建、使用和释放。 会话管理: SQLAlchemy 使用会话(Session)来管理对象的持久化状态。 会话提供了一个工作单元(unit of work)和身份映射(identity map)的概念,使得对象的状态管理和查询更加高效。 事件系统: SQLAlchemy 提供了一个事件系统,允许开发者在 ORM 的各个生命周期阶段插入自定义的钩子函数。 这使得开发者可以在对象加载、修改、删除等操作时执行额外的逻辑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值