💪 专业从事且热爱图像处理,图像处理专栏更新如下👇:
📝《图像去噪》
📝《超分辨率重建》
📝《语义分割》
📝《风格迁移》
📝《目标检测》
📝《图像增强》
📝《模型优化》
📝《模型实战部署》
📝《图像配准融合》
📝《数据集》
📝《高效助手》
目录
一、CVAT简介
CVAT是一个全面的,综合性较强的平台,适合大型项目的开发,多人合作使用。
CVAT的官网链接地址为:CVAT
二、CVAT新建项目
2.1 CVAT账号注册
第一次使用需要注册自己的账号,学者自行先注册好即可:
2.2 新建项目
新建一个项目,新建项目的具体操作方法如下:
创建一个类别名为person时的实例图如下:
2.3 新建任务
项目创建好后,下面是新建任务:
2.4 导入图片
下面是创建任务名,及导入图片,导入图片可以导入电脑本地图片,网页链接图片,云盘图片等。
2.5 提交
图片导入后,点击Submit提交,需要等待一会,见下:
2.6 打开任务
提交完成后打开任务,见下:
打开项目任务
三、CVAT标注数据
3.1 AI自动标注
最左侧常用功能栏,见下,主要介绍常用的:
3.1.1 自动标注模型选择
AI识别是一个很好用的工具,可以提高我们标注的效率,下面演示用YOLO v3自动识别标注的操作:
3.1.2 YoloV3模型自动标注公交车例子
下面演示的是使用YOLO v3自动标注识别公交车的例子:
3.1.3 自动标注识别结果
下面是自动标注识别后的样子:
3.2 手动标注
3.2.1 手动标注例子
上面是使用AI识别自动标注的情况,但是有时候AI识别中是没有的,就需要我们自己手动标记,下面是自己手动标记的操作,我以矩形框标注进行演示,其它的大家可以自行选择,它提供了很多,比如,矩形框标注,线性标注,多边形标注等:
以上就是标记的过程,记得保存。
3.2.2 上传标注
下面是上传自己标注的操作:
3.2.3 导出标注文件
标注完成后需要导出标注文件,操作如下:
- 比如导出的是COCO数据集格式,如下:
3.2.4 完成项目
完成以上操作记得点击完成项目:
3.2.5 导出整个项目
想要导出整个标注项目工程数据的操作如下:
四、总结
以上就是使用CVAT进行标注的详细过程,希望能帮到你!
制作VOC数据集特别简单的工具,精灵标注助手,具体使用方法,同见我另外一篇博客,链接:精灵标注助手制作VOC数据集
使用Labelme制作用于语义分割的.json格式数据集,详细教程见我另外一篇博文:使用labelme打标签
想使用Labelimg制作VOC格式数据集或yolo格式数据集,详细教程见我另外一篇博文:Labelimg制作VOC格式数据集或yolo格式数据集
半自动标注工具ISAT,类似PS中的魔棒工具,点击目标物体自动框选,后台运行的是深度学习模型(多模型可选择),框选精度和打标签效率贼高,非常推荐学者使用此工具打标签,使用方法见:半自动打标签工具ISAT安装及使用教程
感谢您阅读到最后!😊总结不易,多多支持呀🌹 点赞👍收藏⭐评论✍️,您的三连是我持续更新的动力💖
关注公众号「视觉研坊」,获取干货教程、实战案例、技术解答、行业资讯!