💪 专业从事且热爱图像处理,图像处理专栏更新如下👇:
📝《图像去噪》
📝《超分辨率重建》
📝《语义分割》
📝《风格迁移》
📝《目标检测》
📝《图像增强》
📝《模型优化》
📝《模型实战部署》
📝《图像配准融合》
📝《数据集》
📝《高效助手》
在经过图像处理每一帧后,想将连续帧组合成高帧率视频,可以采用下面的方法。
一、准备好连续帧图片集
准备好连续帧图片集,如下,我自己准备了八千多张连续帧图像,图片格式都是.jpg格式,当然其它图片格式也是可以的,后面只需在代码中修改一下即可使用,如果学者需要批量重命名图片集,详细方法见我的另外一篇博客,链接为:添加链接描述
二、使用代码须知
使用代码之前注意几个需要修改的地方:
2.1 图片格式
下面修改为对应的图片格式后缀:
2.2 合成视频的帧率
最终输出的视频帧率,自定义设置:
2.3 合成视频的保存路径
输出视频的保存路径:
2.4 加载图像集的路径
待合成的图片数据文件件路径:
2.5 代码
完整代码见下:
import cv2
import glob
def resize(img_array, align_mode):
_height = len(img_array[0])
_width = len(img_array[0][0])
for i in range(1, len(img_array)):
img = img_array[i]
height = len(img)
width = len(img[0])
if align_mode == 'smallest':
if height < _height:
_height = height
if width < _width:
_width = width
else:
if height > _height:
_height = height
if width > _width:
_width = width
for i in range(0, len(img_array)):
img1 = cv2.resize(img_array[i], (_width, _height), interpolation=cv2.INTER_CUBIC)
img_array[i] = img1
return img_array, (_width, _height)
def images_to_video(path):
img_array = []
for filename in glob.glob(path + '/*.jpg'):
img = cv2.imread(filename)
if img is None:
print(filename + " is error!")
continue
img_array.append(img)
# 图片的大小需要一致
img_array, size = resize(img_array, 'largest')
fps = 25
out = cv2.VideoWriter('demo.avi', cv2.VideoWriter_fourcc(*'DIVX'), fps, size)
for i in range(len(img_array)):
out.write(img_array[i])
out.release()
def main():
# path = "../pictures/test/"
path = "G:/Code/Matalab/ColorTransfer/Save_Images_2"
images_to_video(path)
if __name__ == "__main__":
main()
三、合成效果
运行上面脚本,最终的合成效果见下:
四、总结
以上就是将多帧连续图像合成高帧率视频的方法,希望此方法能帮助到你!
感谢您阅读到最后!😊总结不易,多多支持呀🌹 点赞👍收藏⭐评论✍️,您的三连是我持续更新的动力💖
关注公众号「视觉研坊」,获取干货教程、实战案例、技术解答、行业资讯!