将多帧连续图像合成高帧率视频的方法(详细图文教程)

在这里插入图片描述

💪 专业从事且热爱图像处理,图像处理专栏更新如下👇:
📝《图像去噪》
📝《超分辨率重建》
📝《语义分割》
📝《风格迁移》
📝《目标检测》
📝《图像增强》
📝《模型优化》
📝《模型实战部署》
📝《图像配准融合》
📝《数据集》
📝《高效助手》


在这里插入图片描述

在经过图像处理每一帧后,想将连续帧组合成高帧率视频,可以采用下面的方法。

一、准备好连续帧图片集

准备好连续帧图片集,如下,我自己准备了八千多张连续帧图像,图片格式都是.jpg格式,当然其它图片格式也是可以的,后面只需在代码中修改一下即可使用,如果学者需要批量重命名图片集,详细方法见我的另外一篇博客,链接为:添加链接描述

在这里插入图片描述

二、使用代码须知

使用代码之前注意几个需要修改的地方:

2.1 图片格式

下面修改为对应的图片格式后缀:

在这里插入图片描述

2.2 合成视频的帧率

最终输出的视频帧率,自定义设置:

在这里插入图片描述

2.3 合成视频的保存路径

输出视频的保存路径:
在这里插入图片描述

2.4 加载图像集的路径

待合成的图片数据文件件路径:

在这里插入图片描述

2.5 代码

完整代码见下:

import cv2
import glob


def resize(img_array, align_mode):
    _height = len(img_array[0])
    _width = len(img_array[0][0])
    for i in range(1, len(img_array)):
        img = img_array[i]
        height = len(img)
        width = len(img[0])
        if align_mode == 'smallest':
            if height < _height:
                _height = height
            if width < _width:
                _width = width
        else:
            if height > _height:
                _height = height
            if width > _width:
                _width = width

    for i in range(0, len(img_array)):
        img1 = cv2.resize(img_array[i], (_width, _height), interpolation=cv2.INTER_CUBIC)
        img_array[i] = img1

    return img_array, (_width, _height)


def images_to_video(path):
    img_array = []

    for filename in glob.glob(path + '/*.jpg'):
        img = cv2.imread(filename)
        if img is None:
            print(filename + " is error!")
            continue
        img_array.append(img)

    # 图片的大小需要一致
    img_array, size = resize(img_array, 'largest')
    fps = 25
    out = cv2.VideoWriter('demo.avi', cv2.VideoWriter_fourcc(*'DIVX'), fps, size)

    for i in range(len(img_array)):
        out.write(img_array[i])
    out.release()


def main():
    # path = "../pictures/test/"
    path = "G:/Code/Matalab/ColorTransfer/Save_Images_2"
    images_to_video(path)


if __name__ == "__main__":
    main()

三、合成效果

运行上面脚本,最终的合成效果见下:

在这里插入图片描述

四、总结

以上就是将多帧连续图像合成高帧率视频的方法,希望此方法能帮助到你!

感谢您阅读到最后!😊总结不易,多多支持呀🌹 点赞👍收藏⭐评论✍️,您的三连是我持续更新的动力💖

关注公众号「视觉研坊」,获取干货教程、实战案例、技术解答、行业资讯!

评论 29
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉研坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值