面对项目风险,优秀的项目经理如何变被动为主动?【管理有度7】

项目管理中,风险可能导致项目延期或失败。优秀的项目经理需掌握风险管理,包括识别风险、分析、应对和监控。风险分为已知和未知,风险管理涉及概率和影响评估,常用方法有风险清单、头脑风暴、德尔菲法和访谈。风险应对策略有规避、转移、降低和接受。风险监控是持续的过程,确保应对措施的有效执行。项目经理通过有效风险管理,能化被动为主动,保障项目成功交付。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

“如果这个账号审批不下来,我们的测试工作就没办法按期进行”、

“第三方的接口提供时间还未确定,如果某个时间内还不能提供,我们的联调工作可能就会延期”......

只要你参与或是管理过项目,对这些问题一定不会陌生,这就是项目管理过程中的风险点,如果没有被合理识别和管控,项目管理者就会被这些事项推着走,沦为救火队员。

那么想要化被动为主动,就必须要对项目的风险进行有效的管理。

但是没有把风险管理的全过程讲讲透,今天用一篇文章来把风险管理整个过程讲明白。

一、风险管理的相关概念

在讲风险管理之前,我们需要先来了解风险相关的一些核心概念。

1.1. 什么是风险?

什么是风险,就是那些可能让项目面临失败的因素,那些尚未发生,但是可能会发生,发生之后还会对项目产生影响。

可以看出,风险具有两个属性,一个是风险发生的概率,另外一个是风险发生后产生的影响。

这里要特别解释下,项目中的问题和风险对项目都会对项目产生影响,如何来区分这两者呢,很简单,问题是已经发生的事件,而风险是未来可能会发生的事件,即不确定事件。

1-1.风险和问题的区别

风险又分为两类,一类是已知风险,就是我们知道这个事件本身,举个例子:

我知道系统的完成需要依赖第三方的接口支持,但是对方何时提供,提供的质量如何都会对项目的开展产生影响,并且这个影响是不确定的。

还有另外一类,我们连事件的本身是什么都不清楚,称为未知风险,也就是我们常说的“我们不知道我们不知道”,这里还举同一个例子:

我们在项目初期,完全没有分析到对第三方的接口依赖,更谈不上对此事件发生的概率和影响的评估了。

从这两类风险的概念可以看出,我们在项目管理过程中,只能对已知风险进行事先管理,对于未知风险,只能在发生之后进行及时的补救,以降低损失。

现实生活中,我们谈论风险的时候,一般是指会导致产生负面影响的风险。其实风险分为两个层面的影响,积极影响和消极影响。

消极影响就是我们常说的风险,而积极影响是一种机会。如果我们只知道风险的负面影响,可能会让我们忽略对机会的管理,而导致错过机会。

1.2. 什么是风险管理

知道了什么是风险,我们来看下什么是风险管理,以下是PMBOK指南对风险管理的定义:

项目风险管理旨在利用和强化正面风险(机会),规避或者减轻负面风险(威胁)。---《PMBOK指南》

通过风险管理来降低或者缓解风险对项目造成的影响,具体的风险管理步骤包括风险识别、风险分析,规划风险应对、执行风险应对,以及监督风险。

在探索智慧旅游的新纪元中,一个集科技、创新与服务于一体的整体解决方案正悄然改着我们的旅行方式。智慧旅游,作为智慧城市的重要分支,旨在通过新一代信息技术,如云计算、大数据、物联网等,为游客、旅游企业及政府部门提供无缝对接、高效互动的旅游体验与管理模式。这一方案不仅重新定义了旅游行业的服务标准,更开启了旅游业数字化转型的新篇章。 智慧旅游的核心在于“以人为本”,它不仅仅关注技术的革新,更注重游客体验的提升。从游前的行程规划、信息查询,到游中的智能导航、个性化导览,再到游后的心情分享、服务评价,智慧旅游通过构建“一云多屏”的服务平台,让游客在旅游的全过程中都能享受到便捷、个性化的服务。例如,游客可以通过手机APP轻松定制专属行程,利用智能语音导览深入了解景点背后的故事,甚至通过三维GIS地图实现虚拟漫游,提前感受目的地的魅力。这些创新服务不仅增强了游客的参与感和满意度,也让旅游得更加智能化、趣味化。 此外,智慧旅游还为旅游企业和政府部门带来了前所未有的管理革。通过大数据分析,旅游企业能够精准把握市场动态,实现旅游产品的精准营销和个性化推荐,从而提升市场竞争力。而政府部门则能利用智慧旅游平台实现对旅游资源的科学规划和精细管理,提高监管效率和质量。例如,通过实时监控和数据分析,政府可以迅速应对旅游高峰期的客流压力,有效预防景区超载,保障游客安全。同时,智慧旅游还促进了跨行业、跨部门的数据共享与协同合作,为旅游业的可持续发展奠定了坚实基础。总之,智慧旅游以其独特的魅力和无限潜力,正引领着旅游业迈向一个更加智慧、便捷、高效的新时代。
内容概要:本文详细介绍了大模型的发展现状与未来趋势,尤其聚焦于DeepSeek这一创新应用。文章首先回顾了人工智能的定义、分类及其发展历程,指出从摩尔定律到知识密度提升的转,强调了大模型知识密度的重要性。随后,文章深入探讨了DeepSeek的发展路径及其核心价值,包括其推理模型、思维链技术的应用及局限性。此外,文章展示了DeepSeek在多个行业的应用场景,如智能客服、医疗、金融等,并分析了DeepSeek如何赋能个人发展,具体体现在公文写作、文档处理、知识搜索、论文写作等方面。最后,文章展望了大模型的发展趋势,如通用大模型与垂域大模型的协同发展,以及本地部署小模型成为主流应用渠道的趋势。 适合人群:对人工智能和大模型技术感兴趣的从业者、研究人员及希望利用DeepSeek提升工作效率的个人用户。 使用场景及目标:①了解大模型技术的最新进展和发展趋势;②掌握DeepSeek在不同领域的具体应用场景和操作方法;③学习如何通过DeepSeek提升个人在公文写作、文档处理、知识搜索、论文写作等方面的工作效率;④探索大模型在特定行业的应用潜力,如医疗、金融等领域。 其他说明:本文不仅提供了理论知识,还结合实际案例,详细介绍了DeepSeek在各个场景下的应用方式,帮助读者更好地理解和应用大模型技术。同时,文章也指出了当前大模型技术面临的挑战,如模型的局限性和数据安全问题,鼓励读者关注技术的持续改进和发展。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值