论文阅读:《Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax》

(建议不看,赶组会我没翻译完,随后把组会关于这个个自己理解做的PPT放出来)

基于深度学习模型的长尾大词汇量对象检测是一项具有挑战性和高要求的任务,但仍未得到充分的研究。
在这项工作中,我们提供了第一个系统的分析,最先进的模型在长尾分布前的表现不佳。
我们发现,现有的检测方法在数据集极其倾斜的情况下无法建模少数类,这可能导致分类器在参数大小方面的不平衡。
由于检测和分类的本质区别,直接将长尾分类模型应用于检测框架并不能解决这一问题。
在本工作中,我们提出了一种新的平衡组 balanced group softmax(BAGS)模块,通过组明智训练来平衡检测框架中的分类器。
它隐式地调整头部和尾部类的训练过程,并确保它们都得到充分的训练,而不需要对尾部类的实例进行任何额外的采样。
在最近的长尾大词汇表对象识别基准LVIS上进行的大量实验表明,我们提出的BAGS在对象检测和实例分割方面具有各种骨架和框架,显著提高了检测器的性能。它超越了所有从长尾图像分类中转移而来的先进方法,建立了新的先进方法。

1. Introduction

目标检测[31,29,25,23,21,1]是计算机视觉中最基本、最具挑战性的任务之一。
最近的进展主要是由人工平衡的大规模数据集驱动的,如PASCAL VOC[9]和COCO[24]。
然而在现实中,对象类别的分布通常是长尾[30]。有效的解决方案,使最先进的检测模型适应这种类不平衡的分布是非常需要的,但仍然缺乏。
最近,一个长尾大词汇表对象识别数据集LVIS[14]发布了,它大大方便了更真实场景下的对象检测研究。

长尾目标检测的一个简单的解决方案是,直接在长尾训练数据上训练一个成熟的检测模型(如Faster R-CNN[31])。
然而,当将为相当平衡的数据集(如COCO)设计的检测器调整为长尾数据集(如LVIS)时,会观察到较大的性能下降,由于多重纠缠因素,其原因尚不清楚。
受[20]的启发,我们将检测框架内的表示模块和分类模块进行解耦,发现不同类别对应的proposal分类器的权重规范严重不平衡,因为low-shot类别被激活的机会很少。
通过我们的分析,这是长尾检测性能差的直接原因之一,其本质是由数据不平衡引起的。
如图1所示,我们分别根据训练集中的实例数对在COCO和LVIS上训练的模型的分类器权值规范进行分类排序。
对于COCO来说,由于数据分布相对均衡,导致除了背景类(CID=0, CID为类别ID)外,所有类别的权重规范都相对均衡。
对于LVIS来说,类别权重规范明显不平衡,且与训练实例数呈正相关。这种不平衡的分类器(w.r.t.,它们的参数规范)会使低概率分类器(尾部分类器)的分类分数比多概率分类器(头部分类器)的分类分数小得多。在标准softmax之后,这种不平衡会进一步放大,分类器会错误地压制那些被预测为低风险类别的proposal

在这里插入图片描述

图1所示。分类的训练实例数量(# ins)类别的可可和L对训练集,和相应的分类器的重量标准将从更快R-CNN模型训练可可和L粘度轴表示排序分类指数可可和L粘度我们对齐80类和1230类L VIS可可更好的可视化。类别0表示背景。

分类器的不平衡根源于数据分布的不平衡,多镜头分类器会看到更多和多样化的训练实例,导致支配量。
可以考虑使用长尾分类的解决方案来克服这一问题,包括重新采样训练实例来平衡分布[15,7,32,26],以及在类别水平[5,2,18]或实例水平[23,33]重新加权分类损失。
基于重采样的解决方案适用于检测框架,但可能会增加训练时间和对尾部类的过拟合风险
不幸的是,基于重加权的方法对超参数选择非常敏感,而且由于难以处理特殊的背景类,这是一个非常多的类别,所以不适用于检测框架。
经验表明,这些方法都不能很

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 9
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值