6 未来方向
在本节中,我们从方法创新和任务创新两个角度确定了深度长尾学习的几个未来研究方向。
6.1 New Methodology
我们首先讨论创新深度长尾学习方法的几个潜在方向。
Class re-balancing without label frequencies无标签频率的类别重新平衡。一些真实世界的长尾任务,例如多标签分类或对象检测,可能遭受除类别不平衡之外的额外问题,即标签共现。具体来说,标签共现表示头类标签与尾类标签频繁出现的情况,这可能会在模型训练时偏向不平衡程度,从而难以获得准确的标签频率。考虑到这个问题,现有的基于标签频率的类再平衡方法往往会失败。如何在长尾学习中处理这个问题是一个悬而未决的问题。
无标记数据的迁移学习。长尾学习的一个关键挑战是缺乏足够的尾类样本。从其他未标记样本中转移知识是一种可行的解决方案,例如,自我监督学习、知识提炼和自我训练。然而,现有的迁移方法可能不能很好地处理长尾学习。例如,CReST [97]发现监督训练的模型在长尾图像分类中通常对尾类具有高精度,因此提出选择更多尾类数据用于伪标记和模型训练。然而,这样的发现在长尾对象检测或多标签分类中可能不成立。因此,如何更好地利用未标记数据进行长尾学习值得进一步探索。
Data augmentation for multiple tasks 多任务数据扩充。现有的长尾方法通常是为特定的任务设计的,例如图像分类或图像检测。然而,由于各种任务之间的差异,用于特定任务的现有方法可能无法处理其他任务,导致方法通用性差。考虑到数据增强是所有视觉任务的基础,设计能够同时解决多个长尾任务的更好的基于增强的长尾