Transformer源码解读 PyTorch

Transformer源码解读

刚开始学习深度学习几个月,对于很多近年来提到的模型都不是很清楚,读到Transformer时,注意力是什么都不知道。后面读了一些其他相关的论文逐渐开始懂一些,但是不看到代码,总是有些地方不明白,所以找到了PyTorch实现的Transformer代码进行分析,同时也记录下来,希望能够帮助到大家。

本文是使用notebook直接转的md文件,所以将下面的代码拷贝下来,是直接可以用的(前提是把库都安装好)。

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import math, copy, time
from torch.autograd import Variable
import matplotlib.pyplot as plt
import seaborn
seaborn.set_context(context="talk")
%matplotlib inline

模型结构

在这里插入图片描述
模型结构就是这样的,首先将输入进行Embedding编码,添加进位置信息之后进入编码器。编码器是由N层组成的,每层包括两个子层(图左部分),然后将输出Embedding向量和编码器的输出同时输出解码器,解码器也是由N层组成,每一层包括三个子层(图右面部分),最后将输出经过输出层(Linear+SoftMx)得到输出。

class EncoderDecoder(nn.Module):
    """
    A standard Encoder-Decoder architecture. Base for this and many 
    other models.
    """
    def __init__(self, encoder, decoder, src_embed, tgt_embed, generator):
        super(EncoderDecoder, self).__init__()
        self.encoder = encoder
        self.decoder = decoder
        self.src_embed = src_embed
        self.tgt_embed = tgt_embed
        self.generator = generator
        
    def forward(self, src, tgt, src_mask, tgt_mask):
        "Take in and process masked src and target sequences."
        return self.decode(self.encode(src, src_mask), src_mask,
                            tgt, tgt_mask)
    
    def encode(self, src, src_mask):
        return self.encoder(self.src_embed(src), src_mask)
    
    def decode(self, memory, src_mask, tgt, tgt_mask):
        return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)

这是一个标准的编码器解码器结构,将模型编码后在进行解码。也就是将模型的编码器解码器部分进行封装,后面会对其中的每层进行逐步实现。

class Generator(nn.Module):
    "Define standard linear + softmax generation step."
    def __init__(self, d_model, vocab):
        super(Generator, self).__init__()
        self.proj = nn.Linear(d_model, vocab)

    def forward(self, x):
        return F.log_softmax(self.proj(x), dim=-1)

这是模型最后的线性输出层,主要就是线性映射+softmax。

编码器和解码器栈

编码器

# 编码器子层
class EncoderLayer(nn.Module):
    "Encoder is made up of self-attn and feed forward (defined below)"
    def __init__(self, size, self_attn, feed_forward, dropout):
        super(EncoderLayer, self).__init__()
        self.self_attn = self_attn
        self.feed_forward = feed_forward
        self.sublayer = clones(SublayerConnection(size, dropout), 2)
        self.size = size

    def forward(self, x, mask):
        "Follow Figure 1 (left) for connections."
        x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
        return self.sublayer[1](x, self.feed_forward)

在原文图中可以看出每层编码器包含两个部分,注意力子层和前馈网络子层。每个子层结构都是相同的,在子层后进行标准化,以及残差连接。所以编码器子层复制了两个一样的连接子层 self.sublayer = clones(SublayerConnection(size, dropout), 2) ,其中第一个子层进行多头自注意力机制计算self.self_attn(x, x, x, mask),然后第二个子层实现前馈网络self.feed_forward (分别对应forward里面传入的第二个部分)。下面我们来对编码器涉及到的一些子层进行讲解。

def clones(module, N):
    "Produce N identical layers."
    return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])

拷贝函数主要是实现模型的深拷贝,将其拷贝N次。在上面用到的地方在复制两个一样的连接子层。因为编码器是由多个编码器子层构成的,所以在整体编码器中,还会对编码器子层进行深拷贝。

class LayerNorm(nn.Module):
    "Construct a layernorm module (See citation for details)."
    def __init__(self, features, eps=1e-6):
        super(LayerNorm, self).__init__()
        self.a_2 = nn.Parameter(torch.ones(features))
        self.b_2 = nn.Parameter(torch.zeros(features))
        self.eps = eps

    def forward(self, x):
        mean = x.mean(-1, keepdim=True)
        std = x.std(-1, keepdim=True)
        return self.a_2 * (x - mean) / (std + self.eps) + self.b_2

标准化部分在传统标准化的基础上加入了系数a和偏置b,eps是防止标准差太小。注意到a和b都是作为模型参数参与训练的,这样可以将模型训练为标准差为a均值为b。

class SublayerConnection(nn.Module):
    """
    A residual connection followed by a layer norm.
    Note for code simplicity the norm is first as opposed to last.
    """
    def __init__(self, size, dropout):
        super(SublayerConnection, self).__init__()
        self.norm = LayerNorm(size)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, sublayer):
        "Apply residual connection to any sublayer with the same size."
        return x + self.dropout(sublayer(self.norm(x)))

连接子层主要就是对子层进行残差连接。如果对应下面的多头注意力子层的话,传入的参数sublayer就是多头注意力。这也在开始的编码器子层整体部分提到了。这里需要注意的是原文图中是在注意力层后面加入的norm层,但是这里却是首先进行norm,再传入其他子层。我认为这里可能存在一些问题,因为对于每一个子层来说,最后残差连接的x和传入注意力或前馈层的norm(x)就不相等了。原文中提到了,模型所有层都使用了0.1的dropout,所以下面每层都会有dropout,就不做解释了。
到此,编码器子层的总体结构就有了,接下来就是将编码器子层进行堆叠,构成完成的编码器。

# 编码器实现
class Encoder(nn.Module):
    "Core encoder is a stack of N layers"
    def __init__(self, layer, N):
        super(Encoder, self).__init__()
        self.layers = clones(layer, N)
        self.norm = LayerNorm(layer.size
  • 4
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
嗨!对于Transformer源码解读,我可以给你一些基本的指导。请注意,我不能提供完整的源代码解读,但我可以帮助你理解一些关键概念和模块。 Transformer是一个用于自然语言处理任务的模型,其中最著名的应用是在机器翻译中。如果你想要深入了解Transformer的实现细节,我建议你参考谷歌的Transformer源码,它是用TensorFlow实现的。 在Transformer中,有几个关键的模块需要理解。首先是"self-attention"机制,它允许模型在处理序列中的每个位置时,同时关注其他位置的上下文信息。这个机制在Transformer中被广泛使用,并且被认为是其性能优越的主要原因之一。 另一个重要的模块是"Transformer Encoder"和"Transformer Decoder"。Encoder负责将输入序列转换为隐藏表示,而Decoder则使用这些隐藏表示生成输出序列。Encoder和Decoder都由多个堆叠的层组成,每个层都包含多头自注意力机制和前馈神经网络。 除了这些核心模块外,Transformer还使用了一些辅助模块,如位置编码和残差连接。位置编码用于为输入序列中的每个位置提供位置信息,以便模型能够感知到序列的顺序。残差连接使得模型能够更好地传递梯度,并且有助于避免梯度消失或爆炸的问题。 了解Transformer源码需要一定的数学和深度学习背景知识。如果你对此不太了解,我建议你先学习相关的基础知识,如自注意力机制、多头注意力机制和残差连接等。这样你就能更好地理解Transformer源码中的具体实现细节。 希望这些信息对你有所帮助!如果你有任何进一步的问题,我会尽力回答。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值