中值定理

拉格朗日中值定理

  • 出现f(b) - f(a)或出现 f ( x ) f(x) f(x) f ′ ( x ) f^{'}(x) f(x)之间的关系(也有可能使用牛顿-莱布尼兹公式 ∫ a x f ( t ) d t = F ( x ) \int_{a}^{x}f(t)dt = F(x) axf(t)dt=F(x)), 注意条件中特殊的0和1
    1、 lim ⁡ x → ∞ f ′ ( x ) = e , lim ⁡ x → ∞ [ f ( x ) − f ( x − 1 ) ] = lim ⁡ x → ∞ ( x + c x − c ) x \lim\limits_{x \to \infty}f^{'}(x)=e, \lim\limits_{x \to \infty}[f(x) - f(x - 1)] = \lim\limits_{x \to \infty}(\frac{x + c}{x - c})^{x} xlimf(x)=e,xlim[f(x)f(x1)]=xlim(xcx+c)x,求c。
    2、设f(x)在[-1, 1]上可导,且f(0) = 0, ∣ f ′ ( x ) ∣ ≤ M |f^{'}(x)| \leq M f(x)M。证明:在[-1, 1]上有 ∣ f ′ ( x ) ∣ ≤ M |f^{'}(x)| \leq M f(x)M
    3、高数十八讲P96, 例6.10与习题6.3对比, P97例6.12
    4、设f(x)在[0, 1]可导,f(0) = 0,又 ∣ f ′ ( x ) ∣ ≤ p ∣ f ( x ) ∣   ( 0 < p < 1 ) |f^{'}(x)| \leq p|f(x)|\ (0 < p < 1) f(x)pf(x) (0<p<1),证明 f ( x ) ≡ 0   ( 0 ≤ x ≤ 1 ) f(x) \equiv 0\ (0 \leq x \leq 1) f(x)0 (0x1)
  • 出现f(a), f(b), f©; 这个c有可能是隐含的(例如零点或者极值)
    1、设f(x)在[a, b]上可导,且 ∣ f ′ ( x ) ∣ ≤ M |f^{'}(x)| \leq M f(x)M,又f(x)在(a, b)内至少有一个零点,证明 ∣ f ( a ) ∣ + ∣ f ( b ) ∣ ≤ M ( b − a ) |f(a)| + |f(b)| \leq M(b - a) f(a)+f(b)M(ba)
    2、在区间[0, a]上 ∣ f ′ ′ ( x ) ∣ ≤ M |f^{''}(x)| \leq M f(x)M,且f(x)在(0, a)内取得极大值,证明 ∣ f ′ ( a ) ∣ + ∣ f ′ ( b ) ∣ ≤ M a |f^{'}(a)| + |f^{'}(b)| \leq Ma f(a)+f(b)Ma
  • 证明 F ′ ( ξ ) > 0 F^{'}(\xi) > 0 F(ξ)>0
    1、高数十八讲P96例6.9、P110习题6.11
  • 证明 F ( n ) ( ξ ) > 0 F^{(n)}(\xi) > 0 F(n)(ξ)>0
    1、高数十八讲P110习题6.2(2)

泰勒公式证明(结论中含有抽象函数f(x), 有时也可以通过牛顿莱布尼兹公式将问题转化到3)

  • 在积分区间两端点展开
    1、f(x)在[a, b]连续可微,f(a) = f(b) = 0,求证: max ⁡ ∣ f ′ ( x ) ∣ ≥ 4 ( b − a ) 2 ∫ a b ∣ f ( x ) ∣ d x \max |f^{'}(x)| \geq \frac{4}{(b - a)^2} \int_{a}^{b}|f(x)|dx maxf(x)(ba)24abf(x)dx
    解:f(x) = f(a) + f’( ξ 1 \xi_1 ξ1)(x - a)
    f(x) = f(b) + f’( ξ 2 \xi_2 ξ2)(x - b)
    ∫ a a + b 2 ∣ f ( x ) ∣ d x + ∫ a + b 2 b ∣ f ( x ) ∣ d x = ( b − a ) 2 8 ( ∣ f ′ ( ξ 1 ) ∣ + ∣ f ′ ( ξ 2 ) ∣ ) \int_{a}^{\frac{a+b}{2}}|f(x)|dx + \int_{\frac{a+b}{2}}^{b}|f(x)|dx = \frac{(b - a)^2}{8}(|f'(\xi_1)| + |f'(\xi_2)|) a2a+bf(x)dx+2a+bbf(x)dx=8(ba)2(f(ξ1)+f(ξ2))
  • 在积分区间的中点展开
    2、f(x)在[a, b]二次连续可微, f( a + b 2 \frac{a+b}{2} 2a+b) = 0, 求证 ∣ ∫ a b f ( x ) ∣ ≤ M ( b − a ) 3 24 |\int_{a}^{b}f(x)| \leq \frac{M(b - a)^3}{24} abf(x)24M(ba)3, 其中M=max| f ′ ′ ( x ) f^{''}(x) f(x)|.
    解: F ( x ) = ∫ a x f ( x ) d x F(x)=\int_{a}^{x}f(x)dx F(x)=axf(x)dx
    x 0 x_0 x0为区间中点,将F(x)在两端点展开到两阶(带拉格朗日余项)

泰勒公式常规证明(结论中不含抽象函数f(x))

重要的是如何确定 x 0 x_0 x0和x, 一般的:
1、 x 0 x_0 x0的选取标准:(1)与一阶导数相关的点; (2)区间中点;
2、x的选取标准: (1)与函数值相关的点; (2)区间的端点
通常展开之后两式相加或相减,证明等式时可能会用到介值定理,证明不等式时有时要分区间,也会用到一些常用的不等式。

  • x选择两端点, x 0 x_0 x0选择与一阶导数相关的点
    1、设f(x)在[-1,1]上三阶连续可导,f(-1)=0, f ′ ( 0 ) = 0 ,   f ( 1 ) = 1 f^{'}(0)=0,\ f(1)=1 f(0)=0, f(1)=1, 证明:存在 ξ ∈ ( − 1 , 1 ) \xi \in (-1, 1) ξ(1,1),\ 使得 f ′ ′ ( ξ ) = 3. f^{''}(\xi)=3. f(ξ)=3.

  • 设f(x)在[0, 1]上连续,f(0)=0, f(1)=1.求证:对任意正整数n,存在 ξ \xi ξ,使得 f ( ξ − 1 n ) = f ( ξ ) − 1 n f(\xi - \frac{1}{n})=f(\xi)-\frac{1}{n} f(ξn1)=f(ξ)n1

利用反证法

1、 设 f ( t ) 在 [ 0 , π ] 上 连 续 , 在 ( 0 , π ) 可 导 , 且 ∫ 0 π f ( x ) cos ⁡ x d x = ∫ 0 π f ( x ) sin ⁡ x d x = 0. 证 明 存 在 ξ ∈ ( 0 , π ) , 使 得 f ′ ( ξ ) = 0. 设f(t)在[0, \pi]上连续,在(0, \pi)可导, 且\int_{0}^{\pi}f(x)\cos xdx = \int_{0}^{\pi}f(x)\sin xdx = 0. 证明存在\xi \in (0, \pi), 使得f^{'}(\xi) = 0. f(t)[0,π](0,π),0πf(x)cosxdx=0πf(x)sinxdx=0.ξ(0,π),使f(ξ)=0.
2、18讲P97 6.12和P93 6.2

常用不等式

  • sin ⁡ ( x ) < x < tan ⁡ ( x ) ,   x ∈ ( 0 , π 2 ) \sin(x) < x < \tan(x),\ x \in (0, \frac{\pi}{2}) sin(x)<x<tan(x), x(0,2π)
  • x 1 + x < ln ⁡ ( 1 + x ) < x ,   x ∈ ( 0 , + ∞ ) \frac{x}{1+x} < \ln(1+x) < x, \ x \in (0, +\infty) 1+xx<ln(1+x)<x, x(0,+)
  • 绝对值不等式
  • a b ≤ a + b 2 ≤ a 2 + b 2 2 \sqrt{ab} \leq \frac{a+b}{2} \leq \sqrt{\frac{a^2+b^2}{2}} ab 2a+b2a2+b2
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值