主定理

主定理是分析递归算法时间复杂度的重要工具,它给出了分析递归关系式T(n)=aT(bn)+f(n)的一般方法。当f(n)分别小于、等于和大于nlogba的某个量级时,主定理提供了T(n)的渐进界。大O、大Ω和大Θ符号用于描述函数的增长关系,帮助理解算法的效率。
摘要由CSDN通过智能技术生成

主定理(master theorem):假设递推关系式为:

T ( n ) = a T ( n b ) + f ( n ) T(n) = a T(\frac{n}{b}) + f(n) T(n)=aT(bn)+f(n)

其中, n n n为问题规模、 a a a为递推子问题数量、 n b \frac{n}{b} bn为每个子问题的规模(假设各子问题规模相同)、函数 f ( n ) f(n) f(n)为递推之外的计算量,常数 a ≥ 1 a \geq 1 a1、常数 b > 1 b \gt 1 b>1 T ( n ) T(n) T(n)为非负整数,则

  1. 若存在常数 ϵ > 0 \epsilon \gt 0 ϵ>0,使得 f ( n ) = O ( n log ⁡ b ( a ) − ϵ ) f(n) = \mathcal{O} (n^{\log_{b}(a) - \epsilon}) f(n)=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值