主定理(master theorem):假设递推关系式为:
T ( n ) = a T ( n b ) + f ( n ) T(n) = a T(\frac{n}{b}) + f(n) T(n)=aT(bn)+f(n)
其中, n n n为问题规模、 a a a为递推子问题数量、 n b \frac{n}{b} bn为每个子问题的规模(假设各子问题规模相同)、函数 f ( n ) f(n) f(n)为递推之外的计算量,常数 a ≥ 1 a \geq 1 a≥1、常数 b > 1 b \gt 1 b>1、 T ( n ) T(n) T(n)为非负整数,则
-
若存在常数 ϵ > 0 \epsilon \gt 0 ϵ>0,使得 f ( n ) = O ( n log b ( a ) − ϵ ) f(n) = \mathcal{O} (n^{\log_{b}(a) - \epsilon}) f(n)=