向量(考研)

向量

相关、无关
线性表示
秩(向量组、矩阵)
向量空间(数一)

n n n维向量

n n n个数 a 1 , a 2 , … , a n a_1,a_2,\dots,a_n a1,a2,,an构成的有序数组称为 n n n维向量.
( a 1   a 2 … a n ) T \left(\begin{array}{r} a_1\ a_2\dots a_n \end{array}\right)^{T} (a1 a2an)T

运算法则
α = ( a 1   a 2 … a n ) T β = ( b 1   b 2 … b n ) T \alpha=\left(\begin{array}{r} a_1\ a_2\dots a_n \end{array}\right)^{T}\beta=\left(\begin{array}{r}b_1\ b_2\dots b_n \end{array}\right)^{T} α=(a1 a2an)Tβ=(b1 b2bn)T

  • 内积
    • ( α , β ) = a 1 b 1 + a 2 b 2 + ⋯ + a n b n (\alpha,\beta)=a_1b_1+a_2b_2+\dots+a_nb_n (α,β)=a1b1+a2b2++anbn
    • α T β = ( a 1   a 2 … a n ) ( b 1 b 2 … b n ) \alpha^T\beta=\left(\begin{array}{r} a_1\ a_2\dots a_n \end{array}\right)\left(\begin{array}{c} b_1 \\ b_2 \\ \dots \\ b_n \end{array}\right) αTβ=(a1 a2an)b1b2bn
    • β T α = ( b 1   b 2 … b n ) ( a 1 a 2 … a n ) \beta^T\alpha=\left(\begin{array}{r} b_1\ b_2\dots b_n \end{array}\right)\left(\begin{array}{c} a_1 \\ a_2 \\ \dots \\ a_n \end{array}\right) βTα=(b1 b2bn)a1a2an
    • ( α , β ) = 0 ⇒ α , β (\alpha,\beta)=0\Rightarrow \alpha,\beta (α,β)=0α,β正交.
    • ( α , α ) = α T α = a 1 2 + a 2 2 + ⋯ + a n 2 (\alpha,\alpha)=\alpha^T\alpha=a_1^2+a_2^2+\dots+a_n^2 (α,α)=αTα=a12+a22++an2
    • ∣ ∣ α ∣ ∣ = α T α = a 1 2 + a 2 2 + ⋯ + a n 2 ||\alpha||=\sqrt{\alpha^T\alpha}=\sqrt{a_1^2+a_2^2+\dots+a_n^2} α=αTα =a12+a22++an2
线性相关
  • n n n维向量 α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs,如果 ∃ \exist 不全为 0 0 0 k 1 , k 2 , … , k s k_1,k_2,\dots,k_s k1,k2,,ks使得 k 1 α 1 + k 2 α 2 + ⋯ + k s α s = 0 k_1\alpha_1+k_2\alpha_2+\dots+k_s\alpha_s=0 k1α1+k2α2++ksαs=0成立,则称向量组 α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs线性相关, 否则称向量组 α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs线性无关.

定理

  • 向量组 α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs线性相关
  • ⇔ \Leftrightarrow ∃ \exist 不全为 0 0 0 k 1 , k 2 , … , k s k_1,k_2,\dots,k_s k1,k2,,ks使得 k 1 α 1 + k 2 α 2 + ⋯ + k s α s = 0 k_1\alpha_1+k_2\alpha_2+\dots+k_s\alpha_s=0 k1α1+k2α2++ksαs=0成立
  • ⇔ \Leftrightarrow ∃ \exist 不全为 0 0 0 k 1 , k 2 , … , k s k_1,k_2,\dots,k_s k1,k2,,ks使得
    ( a 1   a 2 … a s ) ( k 1 k 2 … k s ) = 0 \left(\begin{array}{r} a_1\ a_2\dots a_s \end{array}\right)\left(\begin{array}{c} k_1 \\ k_2 \\ \dots \\ k_s \end{array}\right)=0 (a1 a2as)k1k2ks=0
  • ⇔ \Leftrightarrow 齐次方程组
    ( a 1   a 2 … a s ) ( x 1 x 2 … x s ) = 0 \left(\begin{array}{r} a_1\ a_2\dots a_s \end{array}\right)\left(\begin{array}{c} x_1 \\ x_2 \\ \dots \\ x_s \end{array}\right)=0 (a1 a2as)x1x2xs=0有非零解.
  • ⇔ r ( α 1 , α 2 , … , α s ) < s \Leftrightarrow r(\alpha_1, \alpha_2, \dots, \alpha_s)<s r(α1,α2,,αs)<s

推论

  • n n n n n n维向量 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,,αn相关
    • ⇔ ∣ α 1   α 2   …   α n ∣ = 0 \Leftrightarrow|\alpha_1\ \alpha_2\ \dots\ \alpha_n|=0 α1 α2  αn=0
  • n + 1 n+1 n+1 n n n维向量必线性相关.

基础解系

  • 基础解系是指方程组的解集的极大线性无关组,即若干个无关的解构成的能够表示任意解的组合

一些性质

  • 属于不同特征值的特征向量线性无关

几何意义
α \alpha α相关 ⇔ α = 0 \Leftrightarrow\alpha=0 α=0
α 1 , α 2 \alpha_1,\alpha_2 α1,α2相关 ⇔ α 1 , α 2 \Leftrightarrow\alpha_1,\alpha_2 α1,α2共线.
α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3相关 ⇔ α 1 , α 2 , α 3 \Leftrightarrow\alpha_1,\alpha_2,\alpha_3 α1,α2,α3共面.

证明 α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs线性无关

  • 定义法

    • k 1 α 1 + k 2 α 2 + ⋯ + k s α s = 0 k_1\alpha_1+k2\alpha_2+\dots+k_s\alpha_s=0 k1α1+k2α2++ksαs=0
    • 恒等变形(两边同乘、重组)
    • ⇒ k 1 = 0 , k 2 = 0 , … , k s = 0 \Rightarrow k_1=0,k_2=0,\dots,k_s=0 k1=0,k2=0,,ks=0
    • 证出 r ( α 1 , α 2 , … , α s ) = s r(\alpha_1,\alpha_2,\dots,\alpha_s)=s r(α1,α2,,αs)=s
      • r ( A ) = r ( c o l u m n   o f   A ) = r ( r o w   o f   A ) r(A)=r(column\ of\ A)=r(row\ of\ A) r(A)=r(column of A)=r(row of A)
      • r ( A B ) ≤ m i n ( r ( A ) , r ( B ) ) r(AB)\leq min(r(A),r(B)) r(AB)min(r(A),r(B))
      • A A A可逆 ⇒ r ( A B ) = r ( B ) , r ( B A ) = r ( B ) \Rightarrow r(AB)=r(B),r(BA)=r(B) r(AB)=r(B),r(BA)=r(B)

例题

  • 设4维列向量 α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3无关,且与非0的 β 1 , β 2 \beta_1,\beta_2 β1,β2均正交.
    • (1) β 1 , β 2 相 关 \beta_1,\beta_2相关 β1,β2.
    • (2) α 1 , α 2 , α 3 , β 1 \alpha_1,\alpha_2,\alpha_3,\beta_1 α1,α2,α3,β1无关.
      • A = [ α 1 T α 2 T α 3 T ] A=\left[\begin{array}{c} \alpha_1^T \\ \alpha_2^T \\ \alpha_3^T \end{array}\right] A=α1Tα2Tα3T
      • A β i = 0 A\beta_i=0 Aβi=0
      • r ( A ) = 3 ⇒ r ( β 1 , β 2 ) ≤ n − r ( A ) = 4 − 3 = 1 r(A)=3\Rightarrow r(\beta_1,\beta_2)\leq n-r(A)=4-3=1 r(A)=3r(β1,β2)nr(A)=43=1

线性表示

  • α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs n n n维向量, k 1 , k 2 , … , k s k_1,k_2,\dots,k_s k1,k2,,ks是一组实数,称 k 1 α 1 + k 2 α 2 + ⋯ + k s α s k_1\alpha_1+k_2\alpha_2+\dots+k_s\alpha_s k1α1+k2α2++ksαs是向量 α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs的线性组合.
  • n n n维向量 α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs β \beta β,若存在实数 k 1 , k 2 , … , k s k_1,k_2,\dots,k_s k1,k2,,ks使得 k 1 α 1 + k 2 α 2 + ⋯ + k s α s = β k_1\alpha_1+k_2\alpha_2+\dots+k_s\alpha_s=\beta k1α1+k2α2++ksαs=β,则称 β \beta β α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs的线性组合,或称 β \beta β可由 α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs线性表示.
  • 向量 β \beta β可由 α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs线性表出
    ⇔ \Leftrightarrow 存在实数 k 1 , k 2 , … , k s k_1,k_2,\dots,k_s k1,k2,,ks使得 k 1 α 1 + k 2 α 2 + ⋯ + k s α s = β k_1\alpha_1+k_2\alpha_2+\dots+k_s\alpha_s=\beta k1α1+k2α2++ksαs=β
    ⇔ \Leftrightarrow 存在实数 k 1 , k 2 , … , k s k_1,k_2,\dots,k_s k1,k2,,ks使
    ( α 1   α 2 … α s ) ( k 1 k 2 … k s ) = β \left(\begin{array}{r} \alpha_1\ \alpha_2\dots \alpha_s \end{array}\right)\left(\begin{array}{c} k_1 \\ k_2 \\ \dots \\ k_s \end{array}\right)=\beta (α1 α2αs)k1k2ks=β
    ⇔ \Leftrightarrow 方程组
    ( α 1   α 2 … α s ) ( x 1 x 2 … x s ) = β \left(\begin{array}{r} \alpha_1\ \alpha_2\dots \alpha_s \end{array}\right)\left(\begin{array}{c} x_1 \\ x_2 \\ \dots \\ x_s \end{array}\right)=\beta (α1 α2αs)x1x2xs=β
    有解.
    ⇔ r ( α 1 , α 2 , … , α s ) = r ( α 1 , α 2 , … , α s , β ) \Leftrightarrow r(\alpha_1,\alpha_2,\dots,\alpha_s)=r(\alpha_1,\alpha_2,\dots,\alpha_s,\beta) r(α1,α2,,αs)=r(α1,α2,,αs,β)
  • 3.4 α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs无关, α 1 , α 2 , … , α s , β \alpha_1,\alpha_2,\dots,\alpha_s,\beta α1,α2,,αs,β相关
    ⇒ β \Rightarrow \beta β可由 α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs表出,且表示法唯一.
  • 3.3 α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs相关
    ⇒ ∃ \Rightarrow\exist α i \alpha_i αi可由 α 1 , … , α i − 1 , α i + 1 , … , α s \alpha_1,\dots,\alpha_{i-1},\alpha_{i+1},\dots,\alpha_s α1,,αi1,αi+1,,αs表出
  • α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs相关
    ⇒ α 1 , α 2 , … , α s , … , α t \Rightarrow \alpha_1,\alpha_2,\dots,\alpha_s,\dots,\alpha_t α1,α2,,αs,,αt必相关.(部分相关 ⇒ \Rightarrow 整体相关)
    逆否命题(整体无关 ⇒ \Rightarrow 部分无关)
  • α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs无关
    ⇒ \Rightarrow 延伸组 α 1 ~ , α 2 ~ , … , α s ~ \widetilde{\alpha_1},\widetilde{\alpha_2},\dots,\widetilde{\alpha_s} α1 ,α2 ,,αs 必无关.(低维无关 ⇒ \Rightarrow 高维无关)
    逆否命题:高维相关,缩短组一定相关
  • 3.5 α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs可由 β 1 , β 2 , … , β t \beta_1,\beta_2,\dots,\beta_t β1,β2,,βt表示,且 s > t s>t s>t,则 α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs必线性相关.
    多数向量可由少数向量表出 ⇒ \Rightarrow 多数向量一定相关
  • 逆否命题:若 α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs线性无关,且 α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs可由 β 1 , β 2 , … , β t \beta_1,\beta_2,\dots,\beta_t β1,β2,,βt线性表示,则 s ≤ t s\leq t st
  • α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs可由 β 1 , β 2 , … , β t \beta_1,\beta_2,\dots,\beta_t β1,β2,,βt线性表示
    ⇒ r ( α 1 , α 2 , … , α s ) ≤ r ( β 1 , β 2 , … , β t ) \Rightarrow r(\alpha_1,\alpha_2,\dots,\alpha_s)\leq r(\beta_1,\beta_2,\dots,\beta_t) r(α1,α2,,αs)r(β1,β2,,βt)
    推论:若向量组 ( I ) (I) (I) ( I I ) (II) (II)等价
    ⇒ r ( I ) = r ( I I ) \Rightarrow r(I)=r(II) r(I)=r(II)

例题

  • α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3相关, α 2 , α 3 , α 4 \alpha_2,\alpha_3,\alpha_4 α2,α3,α4无关.

    • ( I ) α 1 (I)\alpha_1 (I)α1能否由 α 2 , α 3 \alpha_2,\alpha_3 α2,α3线性表出.
    • ( I I ) α 4 (II)\alpha_4 (II)α4能否由 α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3线性表出.
      • ( I ) (I) (I)可以用反证法、上诉定理3.4
      • ( I I ) (II) (II)可以用秩、反证法
  • β \beta β可由 α 1 , α 2 , … , α m \alpha_1,\alpha_2,\dots,\alpha_m α1,α2,,αm线性表出,但 β \beta β不能由 α 1 , α 2 , … , α m − 1 \alpha_1,\alpha_2,\dots,\alpha_{m-1} α1,α2,,αm1线性表出.

    • ( I ) α m (I)\alpha_m (I)αm能否由 α 1 , α 2 , … , α m − 1 , β \alpha_1,\alpha_2,\dots,\alpha_{m-1},\beta α1,α2,,αm1,β线性表出.
    • ( I I ) α m (II)\alpha_m (II)αm能否由 α 1 , α 2 , … , α m − 1 \alpha_1,\alpha_2,\dots,\alpha_{m-1} α1,α2,,αm1线性表出.
      • 反证法
      • r ( α 1 , α 2 , … , α m ) ≤ r ( α 1 , α 2 , … , α m − 1 ) + 1 = r ( α 1 , α 2 , … , α m − 1 , β ) ≤ r ( α 1 , α 2 , … , α m , β ) = r ( α 1 , α 2 , … , α m ) r(\alpha_1,\alpha_2,\dots,\alpha_m)\leq r(\alpha_1,\alpha_2,\dots,\alpha_{m-1})+1=r(\alpha_1,\alpha_2,\dots,\alpha_{m-1},\beta)\leq r(\alpha_1,\alpha_2,\dots,\alpha_m,\beta)=r(\alpha_1,\alpha_2,\dots,\alpha_m) r(α1,α2,,αm)r(α1,α2,,αm1)+1=r(α1,α2,,αm1,β)r(α1,α2,,αm,β)=r(α1,α2,,αm)
  • 证明 β \beta β能否由 α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_{s} α1,α2,,αs线性表出
    ( 1 ) (1) (1)构造方程组,证明方程组有解
    ( 2 ) (2) (2)找出两个条件:
    α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_{s} α1,α2,,αs线性无关.
    α 1 , α 2 , … , α s , β \alpha_1,\alpha_2,\dots,\alpha_{s},\beta α1,α2,,αs,β线性相关.
    ( 3 ) (3) (3)证明 k ≠ 0 k\neq 0 k=0.(结论为能表出)
    ( 4 ) (4) (4)反证法.(结论为不能表出)

极大无关组

在向量组 α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs中,若存在 α i 1 , α i 2 , … , α i r \alpha_{i1},\alpha_{i2},\dots,\alpha_{ir} αi1,αi2,,αir线性无关,而再添加任一个 α j ( j = 1 , 2 , … , s ) \alpha_j(j=1,2,\dots,s) αj(j=1,2,,s)就有 α i 1 , α i 2 , … , α i r , α j \alpha_{i1},\alpha_{i2},\dots,\alpha_{ir},\alpha_j αi1,αi2,,αir,αj线性相关,则称 α i 1 , α i 2 , … , α i r \alpha_{i1},\alpha_{i2},\dots,\alpha_{ir} αi1,αi2,,αir是向量组 α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs的一个极大线性无关组.

( I ) (I) (I) α i 1 , α i 2 , … , α i r \alpha_{i1},\alpha_{i2},\dots,\alpha_{ir} αi1,αi2,,αir ( I I ) (II) (II) α i 1 , α i 2 , … , α i t \alpha_{i1},\alpha_{i2},\dots,\alpha_{it} αi1,αi2,,αit都是向量组 α 1 , α 2 , … , α s \alpha_{1},\alpha_{2},\dots,\alpha_{s} α1,α2,,αs的极大线性无关组,则 r = t r=t r=t.

定义3.6 向量组 α 1 , α 2 , … , α s \alpha_{1},\alpha_{2},\dots,\alpha_{s} α1,α2,,αs的极大线性无关组中所含向量的个数 r r r称为该向量组的秩,记为 r ( α 1 , α 2 , … , α s ) = r r(\alpha_1,\alpha_2,\dots,\alpha_s)=r r(α1,α2,,αs)=r

r ( α 1 , α 2 , α s ) = s r(\alpha_1,\alpha_2,\alpha_s)=s r(α1,α2,αs)=s
⇔ \Leftrightarrow 极大无关组中有 s s s个向量.
⇔ \Leftrightarrow 极大无关组为 α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs
⇔ \Leftrightarrow α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs无关.

例题

  • ( I ) (I) (I) α 1 , α 2 , … , α r \alpha_{1},\alpha_{2},\dots,\alpha_{r} α1,α2,,αr ( I I ) (II) (II) β 1 , β 2 , … , β s \beta_{1},\beta_{2},\dots,\beta_{s} β1,β2,,βs
    ( I ) (I) (I)可由 ( I I ) (II) (II)线性表出:
    A A A ( I ) (I) (I)无关 ⇒ r ≤ s \Rightarrow r\leq s rs B B B ( I ) (I) (I)相关 ⇒ r > s \Rightarrow r> s r>s
    C C C ( I I ) (II) (II)无关 ⇒ r ≤ s \Rightarrow r\leq s rs D D D ( I I ) (II) (II)相关 ⇒ r > s \Rightarrow r> s r>s

  • ( I ) α 1 = [ 1 , 1 , a ] T , α 2 = [ 1 , a , 1 ] T , α 3 = [ a , 1 , 1 ] T (I)\alpha_1=[1,1,a]^T,\alpha_2=[1,a,1]^T,\alpha_3=[a,1,1]^T (I)α1=[1,1,a]T,α2=[1,a,1]T,α3=[a,1,1]T
    ( I I ) β 1 = [ 1 , 1 , a ] T , β 2 = [ − 2 , a , 4 ] T , β 3 = [ − 2 , a , a ] T (II)\beta_1=[1,1,a]^T,\beta_2=[-2,a,4]^T,\beta_3=[-2,a,a]^T (II)β1=[1,1,a]T,β2=[2,a,4]T,β3=[2,a,a]T
    ( I ) (I) (I)可由 ( I I ) (II) (II)线性表示但 ( I I ) (II) (II)不能由 ( I ) (I) (I)线性表示,求 a a a

    • r ( α 1 , α 2 , α 3 ) < r ( β 1 , β 2 , β 3 ) ≤ 3 r(\alpha_1,\alpha_2,\alpha_3)<r(\beta_1,\beta_2,\beta_3)\leq 3 r(α1,α2,α3)<r(β1,β2,β3)3

  • ( I ) α 1 , α 2 , … , α s (I)\alpha_1,\alpha_2,\dots,\alpha_s (I)α1,α2,,αs ( I I ) β 1 , β 2 , … , β s (II)\beta_1,\beta_2,\dots,\beta_s (II)β1,β2,,βs

    • ( I ) (I) (I)每个 α i ( i = 1 , 2 , … , s ) \alpha_i(i=1,2,\dots,s) αi(i=1,2,,s)都可由 ( I I ) (II) (II)中的 β 1 , β 2 , … , β t \beta_1,\beta_2,\dots,\beta_t β1,β2,,βt线性表出,则称向量组 ( I ) (I) (I)可由向量组 ( I I ) (II) (II)线性表出.

    • ( I ) (I) (I) ( I I ) (II) (II)可以互相线性表出,则称 ( I ) (I) (I) ( I I ) (II) (II)等价.

  • 矩阵 A A A B B B等价,矩阵 A A A经初等变换可得到 B B B.

    • ⇔ r ( A ) = r ( B ) \Leftrightarrow r(A)=r(B) r(A)=r(B)

总结

相关、无关

  • A x = 0 Ax=0 Ax=0有非零解
    • ∣ A ∣ = 0 |A|=0 A=0
    • r ( α 1 , α 2 , … , α s ) < s r(\alpha_1,\alpha_2,\dots,\alpha_s)<s r(α1,α2,,αs)<s

线性表示

  • A x = b Ax=b Ax=b有没有解
    • r ( α 1 , α 2 , … , α s ) = r ( α 1 , α 2 , … , α s , β ) r(\alpha_1,\alpha_2,\dots,\alpha_s)=r(\alpha_1,\alpha_2,\dots,\alpha_s,\beta) r(α1,α2,,αs)=r(α1,α2,,αs,β)
  • 定理3.4
  • 反证法(结论是不能线性表示)

  • 向量组——极大无关组
  • 矩阵 r ( A ) r(A) r(A):行列式、向量、方程组

例题

  • α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs β 1 , β 2 , … , β s − 1 \beta_1,\beta_2,\dots,\beta_{s-1} β1,β2,,βs1均为 n n n维向量.

    • [ α 1 β 1 ] [ α 2 β 2 ] … [ α s − 1 β s − 1 ] \left[\begin{array}{c} \alpha_1 \\ \beta_1 \end{array}\right]\left[\begin{array}{c} \alpha_2 \\ \beta_2 \end{array}\right]\dots \left[\begin{array}{c} \alpha_{s-1} \\ \beta_{s-1} \end{array}\right] [α1β1][α2β2][αs1βs1]相关,则 α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs线性相关.
      • 高维相关 ⇒ \Rightarrow 低维相关
      • 部分相关 ⇒ \Rightarrow 整体相关
    • r ( α 1 , α 2 , … , α s , β 1 , β 2 , … , β s − 1 ) = r ( β 1 , β 2 , … , β s − 1 ) r(\alpha_1,\alpha_2,\dots,\alpha_s,\beta_1,\beta_2,\dots,\beta_{s-1})=r(\beta_1,\beta_2,\dots,\beta_{s-1}) r(α1,α2,,αs,β1,β2,,βs1)=r(β1,β2,,βs1),则 α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs线性相关.
      • r ( α 1 , α 2 , … , α s ) ≤ r ( α 1 , α 2 , … , α s , β 1 , β 2 , … , β s − 1 ) ≤ s − 1 < s r(\alpha_1,\alpha_2,\dots,\alpha_s)\leq r(\alpha_1,\alpha_2,\dots,\alpha_s,\beta_1,\beta_2,\dots,\beta_{s-1})\leq s-1 < s r(α1,α2,,αs)r(α1,α2,,αs,β1,β2,,βs1)s1<s
      • 定理3.5
    • α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs相关,且 α s \alpha_s αs不能由 α 1 , α 2 , … , α s − 1 \alpha_1,\alpha_2,\dots,\alpha_{s-1} α1,α2,,αs1线性表出,则 α 1 , α 2 , … , α s − 1 \alpha_1,\alpha_2,\dots,\alpha_{s-1} α1,α2,,αs1相关.
      • 反证法(定理3.4)
  • α 1 , α 2 , β 1 , β 2 \alpha_1,\alpha_2,\beta_1,\beta_2 α1,α2,β1,β2均为3维无关列向量,且 α 1 , α 2 \alpha_1,\alpha_2 α1,α2线性无关, β 1 , β 2 \beta_1,\beta_2 β1,β2线性无关.

    • 证明 ∃ γ ≠ 0 \exist \gamma \neq 0 γ=0即可由 α 1 , α 2 \alpha_1,\alpha_2 α1,α2线性表示也可由 β 1 , β 2 \beta_1,\beta_2 β1,β2线性表示。
    • α 1 = [ 1 0 2 ] , α 2 = [ 2 1 − 3 ] , β 1 = [ − 3 2 − 5 ] , β 2 = [ 0 1 1 ] \alpha_1=\left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array}\right],\alpha_2=\left[\begin{array}{c} 2 \\ 1 \\ -3 \end{array}\right],\beta_1=\left[\begin{array}{c} -3 \\ 2 \\ -5 \end{array}\right],\beta_2=\left[\begin{array}{c} 0 \\ 1 \\ 1 \end{array}\right] α1=102,α2=213,β1=325,β2=011,求 γ \gamma γ
      • 4个3维向量必线性相关
      • ⇒ ∃ \Rightarrow\exist 不全为0的 k 1 , k 2 , l 1 , l 2 k_1,k_2,l_1,l_2 k1,k2,l1,l2使得 k 1 α 1 + k 2 α 2 + l 1 β 1 + l 2 β 2 = 0 k_1\alpha_1+k_2\alpha_2+l_1\beta_1+l_2\beta_2=0 k1α1+k2α2+l1β1+l2β2=0
      • γ = k 1 α 1 + k 2 α 2 = − l 1 β 1 − l 2 β 2 \gamma=k_1\alpha_1+k_2\alpha_2=-l_1\beta_1-l_2\beta_2 γ=k1α1+k2α2=l1β1l2β2,且 γ ≠ 0 \gamma\neq 0 γ=0
      • γ = 0 ⇒ k 1 = k 2 = l 1 = l 2 = 0 \gamma=0 \Rightarrow k_1=k_2=l_1=l_2=0 γ=0k1=k2=l1=l2=0,与 α 1 , α 2 \alpha_1,\alpha_2 α1,α2线性无关, β 1 , β 2 \beta_1,\beta_2 β1,β2线性无关矛盾.
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值