特征值(考研)

特征值

特征值、特征向量计算

  • 定义法 A α = λ α A\alpha=\lambda\alpha Aα=λα
  • ∣ λ E − A ∣ = 0 |\lambda E - A|=0 λEA=0
  • P − 1 A P = B P^{-1}AP=B P1AP=B
    • A α = λ α ⇒ B ( P − 1 α ) = λ ( P − 1 α ) A\alpha=\lambda\alpha\Rightarrow B(P^{-1}\alpha)=\lambda(P^{-1}\alpha) Aα=λαB(P1α)=λ(P1α)
    • B α = λ α ⇒ A ( P α ) = λ ( P α ) B\alpha=\lambda\alpha\Rightarrow A(P\alpha)=\lambda(P\alpha) Bα=λαA(Pα)=λ(Pα)

相似 P − 1 A P = B P^{-1}AP=B P1AP=B

  • 性质
    • ∣ A ∣ = ∣ B ∣ |A|=|B| A=B
    • r ( A ) = r ( B ) r(A)=r(B) r(A)=r(B)
      • r ( B ) = r ( P − 1 A P ) = r ( A P ) = r ( A ) r(B)=r(P^{-1}AP)=r(AP)=r(A) r(B)=r(P1AP)=r(AP)=r(A)
    • ∣ λ E − A ∣ = ∣ λ E − B ∣ ⇒ λ A = λ B |\lambda E-A|=|\lambda E - B|\Rightarrow\lambda_A=\lambda_B λEA=λEBλA=λB
    • ∑ a i i = ∑ b i i \sum a_{ii}=\sum b_{ii} aii=bii
      • ∑ λ i = ∑ a i i \sum\lambda_i=\sum a_{ii} λi=aii
  • A n A^n An

A ∼ B A\sim B AB

  • ⇒ A + k E ∼ B + k E \Rightarrow A+kE\sim B+kE A+kEB+kE
  • ⇒ ∣ A + k E ∣ = ∣ B + k E ∣ \Rightarrow |A+kE|=|B+kE| A+kE=B+kE
  • ⇒ r ( A + k E ) = r ( B + k E ) \Rightarrow r(A+kE)=r(B+kE) r(A+kE)=r(B+kE)
  • ⇒ λ A + k E = λ B + k E \Rightarrow \lambda_{A+kE}=\lambda_{B+kE} λA+kE=λB+kE

A ∼ B , B ∼ C ⇒ A ∼ C A\sim B,B\sim C\Rightarrow A\sim C AB,BCAC

  • 证明题(证明 A A A C C C相似,找一个中介 B B B,通常为对角矩阵)

A A A可相似对角化

  • A ∼ Λ ⇔ ∃ A\sim \Lambda\Leftrightarrow \exist AΛ可逆矩阵 P P P使得 P − 1 A P = Λ P^{-1}AP=\Lambda P1AP=Λ
  • A P = P Λ AP=P\Lambda AP=PΛ
  • A ( γ 1   γ 2   γ 3 ) = ( γ 1   γ 2   γ 3 ) [ a 1 0 0 0 a 2 0 0 0 a 3 ] A\left(\begin{array}{r} \gamma_1\ \gamma_2\ \gamma_3 \end{array}\right)=\left(\begin{array}{r} \gamma_1\ \gamma_2\ \gamma_3 \end{array}\right)\left[\begin{array}{cccc} a_{1} & 0 & 0 \\ 0 & a_{2} & 0\\ 0 & 0 & a_{3} \end{array}\right] A(γ1 γ2 γ3)=(γ1 γ2 γ3)a1000a2000a3
  • A ( γ 1   γ 2   γ 3 ) = ( a 1 γ 1   a 2 γ 2   a 3 γ 3 ) A\left(\begin{array}{r} \gamma_1\ \gamma_2\ \gamma_3 \end{array}\right)=\left(\begin{array}{r} a_1\gamma_1\ a_2\gamma_2\ a_3\gamma_3 \end{array}\right) A(γ1 γ2 γ3)=(a1γ1 a2γ2 a3γ3)
  • A γ 1 = a 1 γ 1 , A γ 2 = a 2 γ 2 , A γ 3 = a 3 γ 3 A\gamma_1=a_1\gamma_1,A\gamma_2=a_2\gamma_2,A\gamma_3=a_3\gamma_3 Aγ1=a1γ1,Aγ2=a2γ2,Aγ3=a3γ3
  • 对角矩阵是 A A A的三个特征值
  • P P P矩阵的列向量为特征向量(只有和对角矩阵相似的时候)

A A A和对角矩阵相似

  • A ∼ Λ ⇔ A A\sim \Lambda\Leftrightarrow A AΛA n n n个无关的特征向量
  • 充分条件
    • A A A n n n个不同的特征值
    • A T = A A^T=A AT=A
    • λ i \lambda_i λi k k k重特征值,那 λ i \lambda_i λi必有 k k k个无关的特征向量
      • r ( λ i E − A ) = n − k r(\lambda_i E-A)=n-k r(λiEA)=nk
      • ( λ i E − A ) x = 0 (\lambda_i E-A)x=0 (λiEA)x=0

特征值性质

  • 不同特征值的特征向量线性无关
  • k k k重特征值最多有 k k k个线性无关的特征向量
  • ∣ A ∣ = ∏ Λ i |A|=\prod\Lambda_i A=Λi
  • ∑ λ i = ∑ a i i \sum\lambda_i=\sum a_{ii} λi=aii

实对称矩阵

  • A A A必与对角矩阵相似
  • 不同特征值的特征向量相互正交
    • 内积为0 ⇒ \Rightarrow 齐次方程 ⇒ \Rightarrow α \alpha α
  • 用正交矩阵相似对角化 Q − 1 A Q = Λ Q^{-1}AQ=\Lambda Q1AQ=Λ
  • 特征值都是实数
  • A = [ a 1 1 … 1 1 a 1 … 1 ⋮ ⋮ ⋮   ⋮ 1 1 1 … a ] A=\left[\begin{array}{cccc} a & 1 & 1 & \dots & 1 \\ 1 & a & 1 & \dots & 1 \\ \vdots & \vdots & \vdots & \ & \vdots \\ 1 & 1 & 1 & \dots & a \\ \end{array}\right] A=a111a1111 11a
    • A = [ a − 1 0 0 … 0 0 a − 1 0 … 0 ⋮ ⋮ ⋮   ⋮ 0 0 0 … a − 1 ] + [ 1 1 1 … 1 1 1 1 … 1 ⋮ ⋮ ⋮   ⋮ 1 1 1 … 1 ] A=\left[\begin{array}{cccc} a - 1 & 0 & 0 & \dots & 0 \\ 0 & a - 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ & \vdots \\ 0 & 0 & 0 & \dots & a-1 \\ \end{array}\right]+\left[\begin{array}{cccc} 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & \dots & 1 \\ \vdots & \vdots & \vdots & \ & \vdots \\ 1 & 1 & 1 & \dots & 1 \\ \end{array}\right] A=a1000a10000 00a1+111111111 111
    • A A A是对角矩阵, A A A一定与对角矩阵相似
    • B : n , 0 , 0 , … , 0 B:n,0,0,\dots,0 B:n,0,0,,0
    • A : n + a − 1 , a − 1 , a − 1 , … , a − 1 A:n+a-1,a-1,a-1,\dots,a-1 A:n+a1,a1,a1,,a1

求正交矩阵 Q Q Q使 Q − 1 A Q = Λ Q^{-1}AQ=\Lambda Q1AQ=Λ

  • 求特征值
  • 求特征向量
  • 改造特征向量
    • λ i ≠ λ j \lambda_i \neq \lambda_j λi=λj
      • 只需单位化
    • λ i = λ j \lambda_i = \lambda_j λi=λj
      • 若已正交,只单位化
      • 若不正交, S c h m i d t Schmidt Schmidt正交化
  • 构造正交矩阵 Q Q Q
    • Q − 1 A Q = Q T A Q = Λ Q^{-1}AQ=Q^{T}AQ=\Lambda Q1AQ=QTAQ=Λ

S c h m i d t Schmidt Schmidt正交化

  • α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3无关
  • β 1 = α 1 \beta_1=\alpha_1 β1=α1
  • β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 \beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta_1 β2=α2(β1,β1)(α2,β1)β1
  • β 3 = α 3 − ( α 3 , β 1 ) ( β 1 , β 1 ) β 1 − ( α 3 , β 2 ) ( β 2 , β 2 ) β 2 \beta_3=\alpha_3-\frac{(\alpha_3,\beta_1)}{(\beta_1,\beta_1)}\beta_1-\frac{(\alpha_3,\beta_2)}{(\beta_2,\beta_2)}\beta_2 β3=α3(β1,β1)(α3,β1)β1(β2,β2)(α3,β2)β2
  • γ i = β i ∣ β i ∣ \gamma_i = \frac{\beta_i}{|\beta_i|} γi=βiβi

特征值、特征向量定义

  • A − n A-n An阶, α \alpha α n n n维非 0 0 0列向量,若 A α = λ α A\alpha=\lambda\alpha Aα=λα,称 λ \lambda λ
    矩阵 A A A的特征值, α \alpha α是矩阵 A A A属于特征值 λ \lambda λ的特征向量。

    • A α = λ α A\alpha=\lambda\alpha Aα=λα α ≠ 0 \alpha\neq 0 α=0,对 ∀ k ≠ 0 \forall k\neq 0 k=0,有 A ( k α ) = λ ( k α ) A(k\alpha)=\lambda(k\alpha) A(kα)=λ(kα)
    • α 1 , α 2 \alpha_1,\alpha_2 α1,α2 A A A关于特征值 λ \lambda λ的特征向量, k 1 α 1 + k 2 α 2 ≠ 0 k_1\alpha_1+k_2\alpha_2\neq 0 k1α1+k2α2=0仍是 A A A关于特征值 λ \lambda λ的特征向量
  • A α = λ α , α ≠ 0 A\alpha=\lambda\alpha,\alpha\neq 0 Aα=λα,α=0

    • ( λ E − A ) α = 0 , α ≠ 0 (\lambda E-A)\alpha=0,\alpha\neq 0 (λEA)α=0,α=0
    • α \alpha α ( λ E − A ) x = 0 (\lambda E-A)x=0 (λEA)x=0的非零解
    • ∣ λ E − A ∣ = 0 |\lambda E - A|=0 λEA=0求特征值 λ i \lambda_i λi(共 n n n个)
    • ( λ i E − A ) x = 0 (\lambda_i E-A)x=0 (λiEA)x=0求基础解系
    • 矩阵 A A A属于特征值 λ i \lambda_i λi线性无关的特征向量
  • ∣ λ E − A ∣ = λ 3 − ( a 11 + a 22 + a 33 ) λ 2 + S λ − ∣ A ∣ |\lambda E - A|=\lambda^3-(a_{11}+a_{22}+a_{33})\lambda^2+S\lambda-|A| λEA=λ3(a11+a22+a33)λ2+SλA

    • S = ∣ a 11 a 12 a 21 a 22 ∣ + ∣ a 22 a 23 a 32 a 33 ∣ + ∣ a 11 a 13 a 31 a 33 ∣ S=\left|\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right|+\left|\begin{array}{cc} a_{22} & a_{23} \\ a_{32} & a_{33} \end{array}\right|+\left|\begin{array}{cc} a_{11} & a_{13} \\ a_{31} & a_{33} \end{array}\right| S=a11a21a12a22+a22a32a23a33+a11a31a13a33
    • r ( A ) = 1 r(A)=1 r(A)=1
      • ∣ λ E − A ∣ = λ 3 − ( a 11 + a 22 + a 33 ) |\lambda E - A|=\lambda^3-(a_{11}+a_{22}+a_{33}) λEA=λ3(a11+a22+a33) λ 2 = λ 2 [ λ − ( a 11 + a 22 + a 33 ) ] \lambda^2=\lambda^2[\lambda-(a_{11}+a_{22}+a_{33})] λ2=λ2[λ(a11+a22+a33)]
      • λ 1 = a 11 + a 22 + a 33 \lambda_1=a_{11}+a_{22}+a_{33} λ1=a11+a22+a33, λ 2 = λ 3 = 0 \lambda_2=\lambda_3=0 λ2=λ3=0
    • 上述结论可以推广到 n n n
      • λ 1 = a 11 + a 22 + ⋯ + a n n , λ 2 = ⋯ = λ n = 0 \lambda_1=a_{11}+a_{22}+\dots+a_{nn},\lambda_2=\dots=\lambda_n=0 λ1=a11+a22++ann,λ2==λn=0
A A A A + k E A+kE A+kE A − 1 A^{-1} A1 A ∗ A^* A A n A^n An P − 1 A P P^{-1}AP P1AP
λ \lambda λ λ + k \lambda+k λ+k 1 λ \frac{1}{\lambda} λ1 1 λ / A / \frac{1}{\lambda}{/A/} λ1/A/ λ n \lambda^n λn λ \lambda λ
α \alpha α α \alpha α α \alpha α α \alpha α α \alpha α P − 1 α P^{-1}\alpha P1α

A ∗ A = ∣ A ∣ E A^*A=|A|E AA=AE
A ∗ A α = ∣ A ∣ α A^*A\alpha=|A|\alpha AAα=Aα
A ∗ λ α = ∣ A ∣ α A^*\lambda\alpha=|A|\alpha Aλα=Aα
A ∗ α = ∣ A ∣ λ α A^*\alpha=\frac{|A|}{\lambda}\alpha Aα=λAα


例题

  • α 1 , α 2 \alpha_1,\alpha_2 α1,α2 A A A不同特征值的特征向量,证明 α 1 + α 2 \alpha_1+\alpha_2 α1+α2不是 A A A的特征向量.
  • A − 2 A-2 A2阶, α 1 , α 2 \alpha_1,\alpha_2 α1,α2二维线性无关, A α 1 = 0 , A α 2 = 2 α 1 + α 2 A\alpha_1=0,A\alpha_2=2\alpha_1+\alpha_2 Aα1=0,Aα2=2α1+α2,求 A A A的特征值、特征向量.
    • 定义法
    • 相似
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值