Wil van der Aalst于2012年提出了基于对齐(Alignment)的精确度计算方法,该方法中介绍了拟合度、精确度、泛化度和简单度四种质量维度的指标计算方法,下面我们将详细介绍精确度这一指标的计算方法。
1.背景介绍
前面部分我们已经介绍过基于对齐的拟合度计算方法,详情见 https://blog.csdn.net/qq_40420514/article/details/125424149,接下来我们将介绍基于对齐的精确度计算方法。
精确度指标的提出是为了避免模型欠拟合(Underfitting)。计算精确度的前提是假设任何模型M是确定性的,即给定一些执行序列,模型M中只有一条对应的路径。换句话说,在模型中不能有两个具有相同标签的使能变迁。
2.方法思想
为了简化精度的定义,我们将事件日志视为唯一事件的集合。此外,我们定义了以下函数e∈
和一些模型
:
是在事件e发生之前M中的状态。请注意,由于我们考虑了拟合度为1的预处理日志和确定性模型,因此可以导出该状态。
是事件e发生之前流程实例的活动前缀,即事件e之前发生的所有活动的序列。我们将此前缀称为e的上下文。
是在
中使能的活动集,即
.
是在同一上下文中执行的一组活动,即
.其中
,因为我们仅针对拟合度为1的事件日志和确定性模型(相同的前缀总是导致相同的状态)。
每个事件e∈ 隐式地指在执行E之前事件日志中的一个点。对于该点,我们可以计算模型
中使能活动的数量以及在类似上下文
下实际执行的观察活动的数量。这可用于定义以下精度概念:
如果实际观察到模型允许的所有行为,则precision(L,M)=1。通过计算所有事件的平均值,我们自动将频率考虑在内。如果模型有一个在频繁路径上启用的活动,但该活动从未执行,则这比沿不频繁路径启用的未使用活动更严重。
3.经典示例
可以根据上述定义计算得出,
precision(L,M1)= 0.97, precision(L,M2)=1;
precision(L,M3)=0.41, precision(L,M4)=1
4.工具实现
该方法已作为插件在ProM6 中实现,插件名为“Measure Precision/Generalization”。
参考文献:
Van der Aalst W, Adriansyah A, van Dongen B. Replaying history on process models for conformance checking and performance analysis[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2012, 2(2): 182-192.
如需进行相关的了解或者交流,欢迎私信或者加入QQ群: