回归定义:以输入的特征集为X,寻找函数f,预测输出的值(连续值)
流程:
(1)构建N个对象的特征集。特征集的选择有的时候是比较困难的,合适的特征集才能得到较好的结果。
(2)构建回归函数。回归函数可以是线性的、二次式的、三次式的或更高项。理论来讲,我们的回归函数越复杂在训练集上得到的效果就是越好的,但是其在测试集上可能会很差,所以这里其实有一个度。
(3)过拟合的问题解决,加入正则化。正则化即加入权重的函数(常数值*权重的平方和)。原理是权重的平方和越小,则y的变化越小,图像更加光滑。常数值越大,则正则化比重越大,可能loss的值会比较大。因此要选择合适的正则化参数。
(4)梯度下降。梯度下降的基本原来是求导,求取导数为0的点(loss最小的点)。