主要内容:
- 阵列信号模型
- 空间谱估计
- 空域滤波
一、阵列接收信号模型
1、均匀线阵
\quad
K个窄带信号分别从
θ
1
,
θ
2
,
⋯
,
θ
k
\theta_1,\theta_2,\cdots,\theta_k
θ1,θ2,⋯,θk方向,入射到间隔为d的均匀线阵,则接收到的信号向量为
x
(
n
)
=
A
s
(
n
)
+
v
(
n
)
x(n)=As(n)+v(n)
x(n)=As(n)+v(n)
- 第k个信源的方向向量为 α ( θ k ) = [ 1 , e − j ϕ k , ⋯ , e − j ( M − 1 ) ϕ k ] \alpha(\theta_k)=[1,e^{-j\phi_k},\cdots,e^{-j(M-1)\phi_{k}}] α(θk)=[1,e−jϕk,⋯,e−j(M−1)ϕk]
- ϕ k = 2 π d s i n θ k / λ , λ 为 波 长 , λ = c / f 0 \phi_{k}=2\pi d sin\theta_k/\lambda,\lambda为波长,\lambda=c/f_0 ϕk=2πdsinθk/λ,λ为波长,λ=c/f0
2、任意阵列
3、均匀矩形阵
4、均匀圆阵
二、空间谱估计与DOA估计
\quad 单个阵元的接收信号为 x ( m ) = s 1 ( n ) s − j m ϕ 1 X ( ϕ ) = ∑ m = 0 M − 1 x m ( n ) e j m ϕ x(m)=s_1(n)s^{-jm\phi_1}\\X(\phi)=\sum_{m=0}^{M-1}x_m(n)e^{jm\phi} x(m)=s1(n)s−jmϕ1X(ϕ)=∑m=0M−1xm(n)ejmϕ。 ∣ X ( ϕ ) ∣ 2 = ∣ s 1 ( n ) ∣ 2 ∣ s i n ( M 2 ( ϕ − ϕ 1 ) ) s i n ( 1 2 ( ϕ − ϕ 1 ) ) ∣ 2 |X(\phi)|^2=|s_1(n)|^2|\frac{sin(\frac{M}{2}(\phi-\phi_1))}{sin(\frac{1}{2}(\phi-\phi_1))}|^2 ∣X(ϕ)∣2=∣s1(n)∣2∣sin(21(ϕ−ϕ1))sin(2M(ϕ−ϕ1))∣2为空间谱, ϕ = ϕ 1 \phi=\phi_1 ϕ=ϕ1取极大值时,信源方向可根据 ϕ 1 = 2 π d s i n θ 1 / λ \phi_1=2\pi dsin\theta_1/\lambda ϕ1=2πdsinθ1/λ确定。空间谱角度估计的分辨性能由阵列孔径 M d Md Md决定,孔径越大,分辨率越高。空间谱角度估计又被称为DOA估计。
三、基于music算法的DOA估计
\quad
信源在空间角度较靠近时,空间傅氏变换法不能将两信源分辨开,可对比功率谱估计思想用其它 算法进行DOA估计,称为超分辨率估计。
算法步骤
- 1.利用阵列接收的N次快拍数据,由 R ^ = 1 N ∑ n = 1 N x ( n ) x H ( n ) \hat{R}=\frac{1}{N}\sum_{n=1}^Nx(n)x^H(n) R^=N1∑n=1Nx(n)xH(n)确定信号的空间相关矩阵 R ^ \hat{R} R^
- 2.对 R ^ \hat{R} R^进行特征值分解,得到 G ^ \hat{G} G^
- 3.确定 P M U S I C ( θ = 1 α H ( θ ) G ^ G ^ H α ( θ ) P_{MUSIC}(\theta=\frac{1}{\alpha^H(\theta)\hat{G}\hat{G}^H\alpha(\theta)} PMUSIC(θ=αH(θ)G^G^Hα(θ)1的峰值位置,得到波到达的方向 { θ k ^ } k = 1 K \{\hat{\theta_k}\}_{k=1}^K {θk^}k=1K
MUSIC方法适用于任何不存在有相位模糊的阵列结构。
四、信号DOA估计的ESPRIT算法
\quad
ESPRIT算法是在对阵列接收数据的相关矩阵进行特征值分解后,利用了空间相关矩阵信号的旋转不变特性进行角度分辨,无需谱峰搜索。
五、空域滤波
- 权向量 w w w,导向矢量 α ( θ ) = [ 1 , e − j ϕ , ⋯ , e − j ( M − 1 ) ϕ ] T \alpha(\theta)=[1,e^{-j\phi,\cdots,e^{-j(M-1)\phi}}]^T α(θ)=[1,e−jϕ,⋯,e−j(M−1)ϕ]T
- 阵列接收信号 x ( n ) = α ( θ ) s ( n ) x(n)=\alpha(\theta)s(n) x(n)=α(θ)s(n)
- 空域滤波器输出 y ( n ) = w H ( n ) x ( n ) = w H α ( θ ) s ( n ) y(n)=w^H(n)x(n)=w^H\alpha(\theta)s(n) y(n)=wH(n)x(n)=wHα(θ)s(n)
- 取适当的 w 满 足 可 以 使 得 y ( n ) = 0 , 也 可 以 使 得 y ( n ) = M s ( n ) w满足可以使得y(n)=0,也可以使得y(n)=Ms(n) w满足可以使得y(n)=0,也可以使得y(n)=Ms(n)
- 改变空域滤波器的 w w w,可使某些方向的信号通过滤波器,而抑制另一些方向的信号,这就是 空域滤波。
- 空域滤波的方向图
F
(
θ
)
=
∣
y
(
n
)
∣
∣
s
(
n
)
∣
=
∣
w
H
α
(
θ
)
∣
F(\theta)=\frac{|y(n)|}{|s(n)|}=|w^H\alpha(\theta)|
F(θ)=∣s(n)∣∣y(n)∣=∣wHα(θ)∣,若令
w
=
[
1
,
e
−
j
ϕ
k
,
⋯
,
e
−
j
(
M
−
1
)
ϕ
k
]
T
w=[1,e^{-j\phi_k},\cdots,e^{-j(M-1)\phi_{k}}]^T
w=[1,e−jϕk,⋯,e−j(M−1)ϕk]T,其中
ϕ
k
=
2
π
d
s
i
n
θ
k
/
λ
\phi_{k}=2\pi d sin\theta_k/\lambda
ϕk=2πdsinθk/λ,则
波束图在 θ = θ 0 \theta=\theta_0 θ=θ0处取得最大值,因此改变 ϕ 0 或 θ 0 \phi_0或\theta_0 ϕ0或θ0即可改变波束方向,这就是相控阵的工作原理
波束主瓣宽度
\quad
主瓣的半功率宽度(也成为3dB宽度
Δ
0.5
\Delta_{0.5}
Δ0.5)为
Δ
0.5
=
0.886
M
c
o
s
θ
0
λ
d
(
r
a
d
)
=
50.8
M
c
o
s
θ
0
λ
d
(
°
)
\Delta_{0.5}=\frac{0.886}{Mcos\theta_0}\frac{\lambda}{d}(rad)=\frac{50.8}{Mcos\theta_0}\frac{\lambda}{d}(°)
Δ0.5=Mcosθ00.886dλ(rad)=Mcosθ050.8dλ(°)
\quad
可见随着阵元数的增加,波束宽度变窄,分辨力提高。
副瓣
\quad
对于归一化方向图,副瓣电平为
1
2
∣
l
∣
+
1
2
π
\frac{1}{\frac{2|l|+1}{2}\pi}
22∣l∣+1π1
最大副瓣电平为
2
3
π
=
−
13.4
d
B
\frac{2}{3\pi}=-13.4dB
3π2=−13.4dB,对阵列进行加窗处理可以降低旁瓣。
栅瓣
\quad 栅瓣为在某个方向与主瓣电平相同,为避免这种情况,阵元间距应满足 d ≤ λ 1 + ∣ s i n θ 0 ∣ d\le \frac{\lambda}{1+|sin\theta_0|} d≤1+∣sinθ0∣λ
六、数字自适应干扰置零
\quad 数字自适应干扰置零是自适应地选择滤波器权重 w w w,使得在强干扰 s 1 ( n ) s_1(n) s1(n)方向 θ 1 \theta_1 θ1处形成零点,称为干扰置零,即满足 w H α ( θ 1 ) = 0 w^H\alpha(\theta_1)=0 wHα(θ1)=0
\quad
M阵元地均匀线阵可以同时形成地零点个数的最大值为
M
−
1
M-1
M−1。
七、基于MVDR算法的DBF原理
1、MVDR波束形成器原理
\quad MVDR波束形成器选择空域滤波器权向量 w w w使 θ 0 \theta_0 θ0方向的期望信号 s 0 ( n ) s_0(n) s0(n)无失真的通过空域滤波器,而对其他方向的信号和噪声尽量抑制,即 m i n w w H R w , s t . w H α ( θ 0 ) = 1 J ( w ) = w H R w + λ ( 1 − w H α ( θ 0 ) ) 最 优 权 向 量 w 0 = R − 1 α ( θ 0 ) α H ( θ 0 ) R − 1 α ( θ 0 ) 输 出 平 均 功 率 ( 方 向 图 ) P M V D R ( θ ) = 1 α H ( θ 0 ) R − 1 α ( θ 0 ) min_{w}w^HRw,st.w^H\alpha(\theta_0)=1\\J(w)=w^HRw+\lambda(1-w^H\alpha(\theta_0))\\最优权向量w_0=\frac{R^{-1}\alpha(\theta_0)}{\alpha^H(\theta_0)R^{-1}\alpha(\theta_0)}\\输出平均功率(方向图)P_{MVDR}(\theta)=\frac{1}{\alpha^H(\theta_0)R^{-1}\alpha(\theta_0)} minwwHRw,st.wHα(θ0)=1J(w)=wHRw+λ(1−wHα(θ0))最优权向量w0=αH(θ0)R−1α(θ0)R−1α(θ0)输出平均功率(方向图)PMVDR(θ)=αH(θ0)R−1α(θ0)1
2、QR分解的SMI算法
\quad
利用阵列接受向量
x
(
1
)
,
x
(
2
)
,
⋯
,
x
(
n
)
x(1),x(2),\cdots,x(n)
x(1),x(2),⋯,x(n),定义数据矩阵
3、LCMV波束形成器
\quad
线性约束最小方差(LCMA)波束形成器是MVDR波束形成器的推广,有多个约束条件
C
H
w
=
f
,
C
是
约
束
矩
阵
,
f
是
对
应
的
约
束
响
应
向
量
C^Hw=f,C是约束矩阵,f是对应的约束响应向量
CHw=f,C是约束矩阵,f是对应的约束响应向量,此时
m
i
n
w
w
H
R
w
,
s
t
.
C
H
w
=
f
J
(
w
)
=
w
H
R
w
+
λ
(
1
−
C
H
w
)
最
优
权
向
量
w
L
C
M
V
=
R
−
1
C
(
C
H
R
−
1
C
)
−
1
f
输
出
平
均
功
率
(
方
向
图
)
P
L
C
M
V
=
f
H
(
C
H
R
−
1
C
)
−
1
f
min_{w}w^HRw,st.C^Hw=f\\J(w)=w^HRw+\lambda(1-C^Hw)\\最优权向量w_{LCMV}=R^{-1}C(C^HR^{-1}C)^{-1}f\\输出平均功率(方向图)P_{LCMV}=f^H(C^HR^{-1}C)^{-1}f
minwwHRw,st.CHw=fJ(w)=wHRw+λ(1−CHw)最优权向量wLCMV=R−1C(CHR−1C)−1f输出平均功率(方向图)PLCMV=fH(CHR−1C)−1f