数字多波束相控阵基础知识

均匀线阵

在这里插入图片描述
对于一个均匀线阵,假设每个阵元都是理想全向点源,布局如上图所示, 第 1 个阵元位于坐标原点,如果阵元间距为d ,空间窄带远场平面波到达原点的信号可以表示为
s 1 ( t ) = s ( t ) = a ( t ) c o s w t − b ( t ) s i n w t s_1(t)=s(t)=a(t)coswt-b(t)sinwt s1(t)=s(t)=a(t)coswtb(t)sinwt
l l l个阵元接收信号表示为
s l ( t ) = s ( t − τ l ) s_l(t)=s(t-\tau _l) sl(t)=s(tτl)
由于信号是窄带信号,相对于载波相位变化,基带信号相位变化可以忽略不计,则
s l ( t ) = a ( t ) c o s w ( t − τ l ) − b ( t ) s i n w ( t − τ l ) s_l(t)=a(t)cosw(t-\tau_l)-b(t)sinw(t-\tau_l) sl(t)=a(t)cosw(tτl)b(t)sinw(tτl)
l l l个阵元接收信号相对于第1个阵元接收信号的延时
τ l = − ( l − 1 ) d s i n θ c \tau_l=-(l-1)\frac{dsin\theta}{c} τl=(l1)cdsinθ
注意 τ l \tau_l τl符号为负,因为第 l l l个阵元接收信号的等相位面落后于第1个阵元接收信号,故需要加上正的延时。
其中 θ \theta θ为信号入射角度,范围为 [ − π 2 , π 2 ] [-\frac{\pi}{2},\frac{\pi}{2}] [2π,2π]
不同的阵元接收信号,延时不同,信号间存在由延时引起的相位差,该相位差的大小等于
w τ l = w ( l − 1 ) d s i n θ c = 2 π ( l − 1 ) d s i n θ λ w\tau_l=w(l-1)\frac{dsin\theta}{c}=\frac{2\pi(l-1)dsin\theta}{\lambda} wτl=w(l1)cdsinθ=λ2π(l1)dsinθ
常取阵元间距 d = λ 2 d=\frac{\lambda}{2} d=2λ,则 w τ l = π ( l − 1 ) s i n θ w\tau_l=\pi{(l-1)sin\theta} wτl=π(l1)sinθ

相控阵基本结构图

在这里插入图片描述
相控阵天线的基本原理,是通过对每个阵元接收信号进行加权处理,校正信号由于波程差所导致的相位差,该过程如上图所示 。
如果相控阵采用模拟方式实现,则加权移相是一个移相器。当相控阵采用数字化方式实现时,移相功能则通过一个复数乘法器实现。由于一个实数乘法器无法完成移相功能,所以,在数字相控阵当中,需要首先将阵元接收的实信号,
通过一定的正交变换,转换为复信号,也就是该实信号的解析信号。完成正交化后的复信号,通过复数加权,就可以实现移相功能。
常用的相控阵信号表示方式是采用复数矢量的方式,此时的阵列接收信号为一个列矢量,每个元素对应一个阵元接收信号,并且信号也是解析表示。此时第l 个阵元接收解析信号可以表示为
x l ( t ) = s ( t ) e − j w τ l x_l(t)=s(t)e^{-jw\tau_l} xl(t)=s(t)ejwτl
则,阵列接收信号矢量表示为
x ( t ) = [ x 1 ( t ) . . . x L ( t ) ] = s ( t ) [ e − j w τ 1 . . . e − j w τ L ] + n ( t ) = s ( t ) v ( θ ) + n ( t ) \boldsymbol x(t)=\begin{bmatrix} x_1(t)\\ ...\\ x_L(t) \end{bmatrix}=s(t)\begin{bmatrix} e^{-jw\tau_1}\\ ...\\ e^{-jw\tau_L} \end{bmatrix}+ \boldsymbol n(t)=s(t)\boldsymbol v(\theta)+\boldsymbol n(t) x(t)= x1(t)...xL(t) =s(t) ejwτ1...ejwτL +n(t)=s(t)v(θ)+n(t)
其中 s ( t ) = [ a ( t ) + j b ( t ) ] e j w t = m ( t ) e j w t s(t)=[a(t)+jb(t)]e^{jwt}=m(t)e^{jwt} s(t)=[a(t)+jb(t)]ejwt=m(t)ejwt m ( t ) m(t) m(t)称为信号复包络或复基带,信号为窄带信号时, m ( t − τ ) ≈ m ( t ) m(t-\tau) \approx m(t) m(tτ)m(t)
噪声列矢量为 n ( t ) \boldsymbol n(t) n(t)
n ( t ) = [ n 1 ( t ) . . . n L ( t ) ] \boldsymbol n(t) = \begin{bmatrix} n_1(t)\\ ...\\ n_L(t) \end{bmatrix} n(t)= n1(t)...nL(t)
而矢量 v ( θ ) \boldsymbol v(\theta) v(θ)称为信号的方向矢量,或导引矢量,它是由信号到达方向决定的列矢量,即信号入射角度 θ \theta θ
v ( θ ) = [ e − j w τ 1 . . . e − j w τ L ] \boldsymbol v(\theta) = \begin{bmatrix} e^{-jw\tau_1}\\ ...\\ e^{-jw\tau_L} \end{bmatrix} v(θ)= ejwτ1...ejwτL
定义相控阵的权矢量为
w = v ( θ 0 ) \boldsymbol w = \boldsymbol v(\theta_0) w=v(θ0)
其中 θ 0 \theta_0 θ0为期望信号入射角度。
所以,窄带相控阵的权矢量就是信号的方向矢量。相控阵天线加权后的输出信号为
y ( t ) = w H x ( t ) = v ( θ 0 ) H s ( t ) v ( θ ) + v ( θ 0 ) H n ( t ) = L s ( t ) + w H n ( t ) y(t)=\boldsymbol w^H \boldsymbol x(t)=\boldsymbol v(\theta_0)^Hs(t)\boldsymbol v(\theta)+\boldsymbol v(\theta_0)^H \boldsymbol n(t)=Ls(t)+\boldsymbol w^H \boldsymbol n(t) y(t)=wHx(t)=v(θ0)Hs(t)v(θ)+v(θ0)Hn(t)=Ls(t)+wHn(t)
上述加权求和的操作,在相控阵中通常称为波束合成。符号“ H H H”为共轭转置操作。故 w H v ( θ ) = [ e − j w τ 1 . . . e − j w τ L ] H [ e − j w τ 1 . . . e − j w τ L ] = 1 + . . . + 1 = L \boldsymbol w^H \boldsymbol v(\theta)= \begin{bmatrix} e^{-jw\tau_1}\\ ...\\ e^{-jw\tau_L} \end{bmatrix}^H \begin{bmatrix} e^{-jw\tau_1}\\ ...\\ e^{-jw\tau_L} \end{bmatrix}=1+...+1=L wHv(θ)= ejwτ1...ejwτL H ejwτ1...ejwτL =1+...+1=L

确定信号功率和随机信号功率

对于确知信号 s ( t ) s(t) s(t)
P = lim ⁡ T → ∞ 1 T ∫ − T 2 T 2 s 2 ( t ) d t P=\lim_{T \rightarrow \infty }\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}} s^2(t)dt P=TlimT12T2Ts2(t)dt
s ( t ) s(t) s(t)为复信号,则
P = lim ⁡ T → ∞ 1 T ∫ − T 2 T 2 s ( t ) s ∗ ( t ) d t P=\lim_{T \rightarrow \infty }\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}} s(t)s^*(t)dt P=TlimT12T2Ts(t)s(t)dt

对于一个随机过程 ξ ( t ) \xi (t) ξ(t),其均值或数学期望定义
E [ ξ ( t ) ] = ∫ − ∞ ∞ x f 1 ( x , t ) d x E\left [ \xi (t) \right ]=\int_{-\infty }^{\infty}xf_1(x,t)dx E[ξ(t)]=xf1(x,t)dx
常记为 a ( t ) a(t) a(t),其中 f 1 ( x , t ) f_1(x,t) f1(x,t) ξ ( t ) \xi(t) ξ(t)的一维概率密度函数。
随机过程的方差定义为
D [ ξ ( t ) ] = E { [ ξ ( t ) − a ( t ) ] 2 } = E [ ξ 2 ( t ) ] − a 2 ( t ) D\left [ \xi (t) \right ]=E\left \{ \left [ \xi (t)- a(t)\right ] ^2\right \}=E\left [ \xi^2(t) \right ]-a^2(t) D[ξ(t)]=E{[ξ(t)a(t)]2}=E[ξ2(t)]a2(t)
其常记为 σ 2 ( t ) \sigma ^2 (t) σ2(t)
D [ ξ ( t ) ] = ∫ − ∞ ∞ x 2 ( t ) f 1 ( x , t ) d x − [ a ( t ) ] 2 D\left [ \xi (t) \right ]=\int_{-\infty}^{\infty} x^2(t)f_1(x,t)dx-[a(t)]^2 D[ξ(t)]=x2(t)f1(x,t)dx[a(t)]2
故方差等于均方值与均值平方之差。前者为交流功率,后者为直流功率。通常 x ( t ) x(t) x(t)为交流信号,故其信号功率就是方差。
另外有
P = ∫ − ∞ ∞ P ( f ) d f , P ( f ) 为功率谱密度 P=\int_{-\infty}^{\infty}P(f)df,P(f)为功率谱密度 P=P(f)dfP(f)为功率谱密度

数字波束合成 (Digital Beam Forming,DBF)

相控阵方向图

根据阵列天线方向图乘积定理,方向图等于阵元因子与阵因子的乘积。
P ( θ , ϕ ) = P E ( θ , ϕ ) P A ( θ , ϕ ) P(\theta,\phi)=P_E(\theta,\phi)P_A(\theta,\phi) P(θ,ϕ)=PE(θ,ϕ)PA(θ,ϕ)
通常假设阵元都是相同的全向天线,故 P E ( θ , ϕ ) = 1 P_E(\theta,\phi)=1 PE(θ,ϕ)=1
由输出信号与接收信号的关系为 y ( t ) = w H x ( t ) y(t)=\boldsymbol w^H\boldsymbol x(t) y(t)=wHx(t)
y ( t ) y ∗ ( t ) d t = w H s ( t ) v ( θ ) s ∗ ( t ) [ w H v ( θ ) ] ∗ = ∣ s ( t ) ∣ 2 ⋅ ∣ w H s ( t ) v ( θ ) ∣ 2 y(t)y^*(t)dt=\boldsymbol w^H s(t) \boldsymbol v(\theta) s^*(t) [\boldsymbol w^H\boldsymbol v(\theta)]^* = |s(t)|^2 \cdot |\boldsymbol w^H s(t) \boldsymbol v(\theta) |^2 y(t)y(t)dt=wHs(t)v(θ)s(t)[wHv(θ)]=s(t)2wHs(t)v(θ)2
其中 ∗ * 对于矩阵或矢量而言即为 H H H,反之 H H H对于复数而言即是 ∗ *
P i = 1 P_i=1 Pi=1,则输出信号功率表示为
P ( θ ) = ∥ w H v ( θ ) ∥ 2 P(\theta)=\begin{Vmatrix} \boldsymbol w^H\boldsymbol v(\theta) \end{Vmatrix}^2 P(θ)= wHv(θ) 2
则场强方向图表示为
B ( θ ) = ∥ w H v ( θ ) ∥ B(\theta)=\begin{Vmatrix} \boldsymbol w^H\boldsymbol v(\theta) \end{Vmatrix} B(θ)= wHv(θ)
式中,符号 ∥ ∥ \begin{Vmatrix} \end{Vmatrix} 为2-范数。

相控阵的信噪比

输出信号 y ( t ) = L s ( t ) y(t)=Ls(t) y(t)=Ls(t)的功率
P s o = 1 T ∫ y ( t ) y ∗ ( t ) d t = 1 T ∫ L s ( t ) L s ∗ ( t ) d t = L 2 1 T ∫ s ( t ) s ∗ ( t ) d t = L 2 P s i P_{so}=\frac{1}{T}\int y(t)y^*(t)dt=\frac{1}{T}\int Ls(t)Ls^*(t)dt=L^2\frac{1}{T}\int s(t)s^*(t)dt=L^2 P_{si} Pso=T1y(t)y(t)dt=T1Ls(t)Ls(t)dt=L2T1s(t)s(t)dt=L2Psi
噪声功率
y ( t ) = ) = L s ( t ) + w H n ( t ) y(t)=)=Ls(t)+\boldsymbol w^H \boldsymbol n(t) y(t)=)=Ls(t)+wHn(t),移相不改变噪声功率。
P n o = L P n i P_{no}=L P_{ni} Pno=LPni
其可用等效噪声温度描述。

S N R o = P s o P n o = L P s i P n i SNR_o = \frac{P_{so}}{P_{no}}=L\frac{P_{si}}{P_{ni}} SNRo=PnoPso=LPniPsi

相控阵的优点

抗干扰、多波束、宽带。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值