一、平面图概念
\quad
如果能把图G画在平面上,使得除顶点外,边与边之间没有交叉,称G可以嵌入平面,或称G是可平面图。可平面图G的边不交叉的一种画法,称为G的一种平面嵌入,G的平面嵌入表示的图称为平面图。例如下图所示:
二、平面图的性质
\quad
一个平面图G把平面分成若干连通片,这些连通片称为G的区域,或G的一个面。G的面组成的集合用Φ表示。
\quad
在G中,顶点和边都与某个给定区域关联的子图,称为该面的边界。某面 f 的边界中含有的边数(割边计算2次)称为该面 f 的次数, 记为deg(f)。如下图所示:
定理一:平面图的次数公式
∑
f
∈
Φ
d
e
g
(
f
)
=
2
m
\sum_{f\in Φ} deg(f) = 2m
f∈Φ∑deg(f)=2m
\quad
证明:对G的任意一条边e, 如果e是某面割边,那么由面的次数定义,该边给G的总次数贡献2次;如果e不是割边,那么,它必然是两个面的公共边,因此,由面的次数定义,它也给总次数贡献2次。
定理二:平面图的欧拉公式
设
G
=
(
n
,
m
)
G=(n,m)
G=(n,m)是连通平面图,Φ是G的面数,则:
n
−
m
+
Φ
=
2
n-m+Φ=2
n−m+Φ=2
\quad
证明:情形1,G是树,则m=n-1,Φ=1,显然成立;情形2,G不是树的连通平面图,则G存在非割边e,显然,G-e是连通平面图,且边数为m-1,面数为Φ-1,由最小性假设,G-e满足欧拉等式:
n
−
(
m
−
1
)
+
(
Φ
−
1
)
=
2
n-(m-1)+(Φ-1)=2
n−(m−1)+(Φ−1)=2,即
n
−
m
+
Φ
=
2
n-m+Φ=2
n−m+Φ=2,得证。
欧拉公式的几个推论
1、设G是具有ф个面k个连通分支的平面图,则:
n
−
m
+
Φ
=
k
+
1
n-m+Φ=k+1
n−m+Φ=k+1证明:对第i (1≦i≦k)个分支来说,设顶点数为
n
i
n_i
ni,边数为
m
i
m_i
mi,面数为фi,由欧拉公式:
n
i
−
m
i
+
Φ
i
=
2
n_i-m_i+Φ_i=2
ni−mi+Φi=2,得
∑
i
=
1
k
(
n
i
−
m
i
+
Φ
i
)
=
2
k
\sum_{i=1}^k (n_i-m_i+Φ_i)=2k
∑i=1k(ni−mi+Φi)=2k。其中,
∑
i
=
1
k
n
i
=
n
,
∑
i
=
1
k
m
i
=
m
,
∑
i
=
1
k
Φ
i
=
Φ
+
k
−
1
\sum_{i=1}^k n_i=n, \sum_{i=1}^k m_i = m, \sum_{i=1}^k Φ_i=Φ+k-1
∑i=1kni=n,∑i=1kmi=m,∑i=1kΦi=Φ+k−1,因此
n
−
m
+
Φ
=
k
+
1
n-m+Φ=k+1
n−m+Φ=k+1。
2、设G是具有n个点m条边ф个面的连通平面图,如果对G的每个面f ,有:deg(f) ≥ l ≥3,则:
m
≤
l
l
−
2
(
n
−
2
)
m \le \frac{l}{l-2}(n-2)
m≤l−2l(n−2)证明:
∑
f
∈
Φ
d
e
g
(
f
)
=
2
m
≥
l
Φ
,
Φ
=
2
−
n
+
m
≤
2
m
l
\sum_{f\in Φ} deg(f) = 2m \geq lΦ , Φ=2-n+m \le \frac{2m}{l}
∑f∈Φdeg(f)=2m≥lΦ,Φ=2−n+m≤l2m,因此
m
≤
l
l
−
2
(
n
−
2
)
m \le \frac{l}{l-2}(n-2)
m≤l−2l(n−2)。
推论2也可叙述为若图G中
m
>
l
l
−
2
(
n
−
2
)
m \gt \frac{l}{l-2}(n-2)
m>l−2l(n−2),则G是非可平面图。例如,
K
3
,
3
K_{3,3}
K3,3是非可平面图,因为它每个面次数至少是4,即
l
=
4
l=4
l=4,
9
>
4
2
∗
(
6
−
2
)
=
8
9 \gt \frac{4}{2}*(6-2)=8
9>24∗(6−2)=8,故不是可平面图。
3、简单平面图 G = ( n , m ) G=(n,m) G=(n,m)满足: m ≤ 3 n − 6 m \le 3n-6 m≤3n−6证明:因为G是简单图,所以每个面的次数至少为3,即l=3。于是,由推论2得: m ≤ 3 n − 6 m \le 3n-6 m≤3n−6。例如, K 5 K_{5} K5不可平面,因为其m=10,n=5,不满足该不等式。
4、设G是具有n个点m条边的连通平面图,若G的每个圈均由长度是 l l l的圈围成,则: m ( l − 2 ) = l ( n − 2 ) m(l-2)=l(n-2) m(l−2)=l(n−2)证明: n − m + 2 m l = 2 , l ( n − m ) + 2 m = 2 l , m ( l − 2 ) = l ( n − 2 ) n-m+\frac{2m}{l}=2,l(n-m)+2m=2l, m(l-2)=l(n-2) n−m+l2m=2,l(n−m)+2m=2l,m(l−2)=l(n−2)
5、设G是具有n个点m条边的简单平面图,则:
δ
≤
5
\delta \le 5
δ≤5
反证:若
δ
≥
6
\delta \geq 6
δ≥6,由握手定理,
6
n
≤
∑
d
(
v
)
=
2
m
,
m
>
3
n
−
6
6n \le \sum d(v) =2m, m>3n-6
6n≤∑d(v)=2m,m>3n−6,故与推论3矛盾。
三、极大平面图及其性质
定义:设G是简单可平面图,如果G是
K
i
(
1
≦
i
≦
4
)
K_i (1≦i≦4)
Ki(1≦i≦4),或者在G的任意非邻接顶点间添加一条边后,得到的图均是非可平面图,则称G是极大可平面图。极大可平面图的平面嵌入称为极大平面图。
显然的结论:设G是极大平面图,则G必然连通;若G结束大于等于3,则G无割边
需注意的点:顶点数相同的极大平面图并不唯一
定理一:极大平面图的三角形特征
\quad
设G是至少有3个顶点的平面图,则G是极大平面图,当且仅当G的每个面的次数是3且为单图。此时,每个面的边界是三角形。由此可推得,
m
=
3
n
−
6
,
Φ
=
2
n
−
4
m=3n-6,Φ=2n-4
m=3n−6,Φ=2n−4
四、极大外平面图及其性质
\quad
定义:若一个可平面图G存在一种平面嵌入,使得其所有顶点均在某个面的边界上,称该图为外可平面图。外可平面图的一种外平面嵌入,称为外平面图。设G是一个简单外可平面图,若在G中任意不邻接顶点间添上一条边后,G成为非外可平面图,则称G是极大外可平面图。极大外可平面图的外平面嵌入,称为极大外平面图。
定理1:G是一个连通简单外可平面图,则在G中有一个度数至多是2的顶点。
定理2:设G是一个有n (n≥3)个点,且所有点均在外部面上的极大外平面图,则G有n-2个内部面。
定理3:设G是一个有n (n≥3)个点,且所有点均在外部面上的外平面图,则G是极大外平面图,当且仅当其外部面的边界是圈,内部面是三角形。
四、平面图的对偶图
对于给定图G,得到G的对偶图 G ∗ G^* G∗的规则如下:
- 在G的每个面 f i f_i fi内取一个点 v i ∗ v_i^* vi∗作为 G ∗ G^* G∗的一个顶点
- 对G的一条边e,若e是两个面的公共边,则连接这两个面的顶点,且连线穿过e;若e是某个面割边,则以该面顶点作环,且让它与e相交。
对偶图的性质:
- G ∗ G^* G∗顶点数等于G的面数
- G ∗ G^* G∗边数等于G的边数
- G ∗ G^* G∗面数等于G的顶点数
- d ( v ∗ ) = d e g ( f ) d(v^*)=deg(f) d(v∗)=deg(f)
- 对于连通的平面图G,其 ( G ∗ ) ∗ = G (G^*)^*=G (G∗)∗=G
- 同构的平面图可以有不同构的对偶图
定理一:平面图G的对偶图必然连通
欧拉图的对偶图是偶图
五、平面图的判定
\quad
对于3阶以上的具有m条边的单图G来说,如果G满足如下条件之一: (1)m>3n-6; (2)
K
5
K_5
K5(5阶完全图)是G的一个子图;(3)
K
3
,
3
K_{3,3}
K3,3(3阶完全偶图)是G的一个子图,那么,G是非可平面图。
\quad
下面给出平面图判定的充要条件,在此之前,我们先来看看图的两种操作——2度顶点扩充和2度顶点收缩。
\quad
在图G的边上插入一个2度顶点,使一条边分成两条边,称将图在2度顶点内扩充;去掉一个图的2度顶点,使关联它们的两条边合并成一条边,称将图G在2度顶点内收缩。
\quad
定义两图同胚,即通过反复在2度顶点扩充或收缩后能够变成一对同构的图。
\quad
重头戏来啦,库拉托斯基给出了平面图判定的充要条件,如下:图G是可平面的,当且仅当它不含
K
5
K_5
K5或
K
3
,
3
K_{3,3}
K3,3同胚的子图。
\quad
判断一张图是否是平面图,可以首先看看其子图经过2度顶点操作能不能变成五阶完全图,我们需要知道五阶完全图每个顶点的度数是4,如果不能,再看看能不能变成
k
3
,
3
k_{3,3}
k3,3,
k
3
,
3
k_{3,3}
k3,3每个顶点度数为3。
\quad
与之相似的判定定理是瓦格纳提出来的:设u,v是简单图G的一条边。去掉该边,重合其端点,在删去由此产生的环和平行边。这一过程称为图G的初等收缩或图的边收缩运算。简单图G是可平面图当且仅当它不含有可收缩到
K
5
K_5
K5或
K
3
,
3
K_{3,3}
K3,3的子图。
\quad
一个用枚举法证明的小定理:至少有9个顶点的简单可平面图的补图是不可平面的,而9是这个数目中的最小的一个。