平面图定义
交叉点和交叉边:
有些图形不论如何改画,除去结点外,总有边相交叉。
即不管怎样改画,至少有一条边与其他边相交叉,故它是非平面图。
平面图可应用到地下管网,电子线路等方面。
平面图的判定
1.观察法
2.欧拉公式判定
在平面图G的一个平面表示中,由边所包围的其内部不包含图(其它结点和边)的结点和边的区域,称为G的一个面(Surface)。
包围该面的诸边所构成的回路称为这个面的边界 (Bound) 。
面r的边界的长度称为该面的次数(Degree),记为D®。
区域面积有限的面称为有限面(Finite Surface),区域面积无限的面称为无限面(Infinite Surface)。
平面图有且仅有一个无限面。
定理10.3.1:平面图中所有面的次数之和等于边数的二倍。
证明:
任何一条边,或者是两个面边界的公共边,或者是在一个面中作为边界被重复计算两次,故平面图所有面的次数之和等于其边数的二倍。
1750年,欧拉发现,任何一个凸多面体,若有n个顶点、m条棱和r个面,则有n-m+r = 2。这个公式可以推广到平面图上来,称之为欧拉公式
定理10.3.2:设G = <V, E>是连通平面图,若它有n个结点、m条边和r个面,则有:n-m+r=2 (存在自回路也适用)
证明: 对G的边数m进行归纳。
若m = 0,由于G是连通图,故必有n = 1,这时只有一个无限面,即r = 1。所以n-m+r = 1-0+1 = 2
定理成立。
若m=1,此时有两种情况:
该边是自回路,则有n=1,r=2,这时
n-m+r=1-1+2=2
该边不是自回路,则有n=2,r=1,这时
n-m+r=2-1+1=2
所以m=1时,定理也成立。
假设对少于m条边的所有连通平面图,欧拉公式
成立。现考虑m条边的连通平面图,设它有n个
结点。分以下两种情况:
m条边的情况:
若G是树,那么m=n-1,这时r=1。所以
n-m+r=n-(n-1)+1=2
若G不是树,则G中必有回路,因此有基本回路,设e是某基本回路的一条边,则G’=<V,E-{e}>仍是连通平面图,它有n个结点,m-1条边和r-1个面,按归纳假设知:n-(m-1)+(r-1)=2
整理得:n-m+r=2
所以对m条边时,欧拉公式也成立。
定理10.3.2推论:设G是一个(n,m)简单连通平面图,
若m>1,则有:m≤3n-6(注意是简单连通平面图,简单图没有自回路和平行边)
不等式m≤3n-6是判断一个简单连通图是平面图的必要非充分条件。
满足不等式的简单连通图未必是平面图。
但该推论的逆否命题却非常有用,可以用它来判定某些图是非平面图。
例子:证明完全图K5是非平面图
定理:设G为一平面连通简单图,其结点数n≥4,边数为m,且G不以K3为其子图,则有m≤2n-4。
证明:由于G是不以K3为子图的简单图,故G中每个面的边界长度不小于4。而G的k个面的边界长度和
,所以2m ≥4k,再结合欧拉公式n-m+k=2, 则有m≤2n-4。
例子:不使用观察法证明图K3,3是一个非平面图。
证明: 事实上,假设K3,3是一个平面图,那么它的每个面的次数均不能小于等于3,即每个面的次数均大于等于k(k≥4),
m=9, 2n-4=12-4=8, 有m ≥ 2n-4,结合上页定理,所以K3,3一定不是平面图
3.库拉托夫斯基定理
对于任意给定的图G=<V,E>:
设e=(u,v)是G的任意一条边,如果在图G中删除该边并新增一个结点w及两条边e1=(u,w),e2=(w,v),则称该操作为对图G边切割操作;
设w是G中任意一个度数为2的结点,且是边e1=(u,w)和e2=(w,v)的公共结点,如果在图G中删除结点w及边e1和e2,并增加边e1=(u,v),则称该操作为对图G的结点贯通操作;
对图G的边切割操作和结点贯通操作统称为对图G的同胚操作。
定理10.3.4(库拉托夫斯基定理),
一个图是平面图的充分必要条件是它的任何子图都不同胚于K5或K3,3。(任意一个图判断是否是平面图的充要条件)
定理10.3.4(库拉托夫斯基定理) 一个图是平面图的充分必要条件是它的任何子图都不可能收缩为K5或K3,3。
定理10.3.3推论 一个图是非平面图的充分必要条件是它存在一个能收缩为K5或K3,3的子图。
K5和K3,3被称为库拉托夫斯基图。
对偶图
对偶图的概念
对偶图的结论:
着色问题
着色图的性质
布鲁克斯定理 维津定理
应用:
边着色
维津定理
面着色
面着色可以转化为点着色来完成。
定理:地图G是k-面可色的,当且仅当它的对偶图G*是k-可色图。
定理:若图G是一个简单平面图,则该图中至少存在一个度数小于或等于5的结点。
五色定理:设G=<V,E>是任意给定的一个连通简单平面图,则G的点色数为5。
四色猜想:连通简单平面图的色数不超过4。