离散数学平面图对偶图和着色问题

本文深入探讨了平面图的定义和判定方法,包括欧拉公式、库拉托夫斯基定理以及平面图的对偶图。平面图的欧拉公式n-m+r=2提供了平面性的关键判据,而库拉托夫斯基定理则指出平面图的充分必要条件是不存在K5或K3,3子图。此外,文章还涉及了图的着色问题,如布鲁克斯定理和维津定理,以及它们在图着色中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

离散数学复习命题公式的范式

离散数学平面图对偶图和着色问题

离散数学谓词逻辑

离散数学-图的运算与基本概念、导出子图、路与连通

离散数学关系的基本运算和关系的性质闭包

离散数学-欧拉图和哈密顿图

平面图定义

交叉点和交叉边:
在这里插入图片描述
在这里插入图片描述
有些图形不论如何改画,除去结点外,总有边相交叉。
即不管怎样改画,至少有一条边与其他边相交叉,故它是非平面图。
平面图可应用到地下管网,电子线路等方面。
在这里插入图片描述

平面图的判定

1.观察法

在这里插入图片描述
在这里插入图片描述

2.欧拉公式判定

在平面图G的一个平面表示中,由边所包围的其内部不包含图(其它结点和边)的结点和边的区域,称为G的一个面(Surface)。
包围该面的诸边所构成的回路称为这个面的边界 (Bound) 。
面r的边界的长度称为该面的次数(Degree),记为D®。
区域面积有限的面称为有限面(Finite Surface),区域面积无限的面称为无限面(Infinite Surface)。
平面图有且仅有一个无限面
在这里插入图片描述
定理10.3.1:平面图中所有面的次数之和等于边数的二倍
证明:
任何一条边,或者是两个面边界的公共边,或者是在一个面中作为边界被重复计算两次,故平面图所有面的次数之和等于其边数的二倍。
1750年,欧拉发现,任何一个凸多面体,若有n个顶点、m条棱和r个面,则有n-m+r = 2。这个公式可以推广到平面图上来,称之为欧拉公式

定理10.3.2:设G = <V, E>是连通平面图,若它有n个结点、m条边和r个面,则有:n-m+r=2 (存在自回路也适用)
证明: 对G的边数m进行归纳。
若m = 0,由于G是连通图,故必有n = 1,这时只有一个无限面,即r = 1。所以n-m+r = 1-0+1 = 2
定理成立。
若m=1,此时有两种情况:
该边是自回路,则有n=1,r=2,这时
n-m+r=1-1+2=2
该边不是自回路,则有n=2,r=1,这时
n-m+r=2-1+1=2
所以m=1时,定理也成立。
 假设对少于m条边的所有连通平面图,欧拉公式
成立。现考虑m条边的连通平面图,设它有n个
结点。分以下两种情况:
m条边的情况:
若G是树,那么m=n-1,这时r=1。所以
n-m+r=n-(n-1)+1=2
若G不是树,则G中必有回路,因此有基本回路,设e是某基本回路的一条边,则G’=<V,E-{e}>仍是连通平面图,它有n个结点,m-1条边和r-1个面,按归纳假设知:n-(m-1)+(r-1)=2
整理得:n-m+r=2
所以对m条边时,欧拉公式也成立。

定理10.3.2推论:设G是一个(n,m)简单连通平面图,
若m>1,则有:m≤3n-6
(注意是简单连通平面图,简单图没有自回路和平行边)
在这里插入图片描述
不等式m≤3n-6是判断一个简单连通图是平面图的必要非充分条件。
满足不等式的简单连通图未必是平面图。
但该推论的逆否命题却非常有用,可以用它来判定某些图是非平面图。
例子:证明完全图K5是非平面图
在这里插入图片描述
定理:设G为一平面连通简单图,其结点数n≥4,边数为m,且G不以K3为其子图,则有m≤2n-4。
证明:由于G是不以K3为子图的简单图,故G中每个面的边界长度不小于4。而G的k个面的边界长度和 在这里插入图片描述
,所以2m ≥4k,再结合欧拉公式n-m+k=2, 则有m≤2n-4。

例子:不使用观察法证明图K3,3是一个非平面图。

证明: 事实上,假设K3,3是一个平面图,那么它的每个面的次数均不能小于等于3,即每个面的次数均大于等于k(k≥4),
m=9, 2n-4=12-4=8, 有m ≥ 2n-4,结合上页定理,所以K3,3一定不是平面图

3.库拉托夫斯基定理

对于任意给定的图G=<V,E>:
设e=(u,v)是G的任意一条边,如果在图G中删除该边并新增一个结点w及两条边e1=(u,w),e2=(w,v),则称该操作为对图G边切割操作
设w是G中任意一个度数为2的结点,且是边e1=(u,w)和e2=(w,v)的公共结点,如果在图G中删除结点w及边e1和e2,并增加边e1=(u,v),则称该操作为对图G的结点贯通操作
对图G的边切割操作和结点贯通操作统称为对图G的同胚操作。
定理10.3.4(库拉托夫斯基定理),
一个图是平面图的充分必要条件是它的任何子图都不同胚于K5或K3,3。(任意一个图判断是否是平面图的充要条件)
定理10.3.4(库拉托夫斯基定理) 一个图是平面图的充分必要条件是它的任何子图都不可能收缩为K5或K3,3。
定理10.3.3推论 一个图是非平面图的充分必要条件是它存在一个能收缩为K5或K3,3的子图。
K5和K3,3被称为库拉托夫斯基图。
在这里插入图片描述

对偶图

对偶图的概念
在这里插入图片描述
在这里插入图片描述
对偶图的结论:
在这里插入图片描述
在这里插入图片描述

着色问题

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
着色图的性质
在这里插入图片描述

布鲁克斯定理 维津定理

在这里插入图片描述
应用:
在这里插入图片描述
在这里插入图片描述
边着色
在这里插入图片描述
维津定理
在这里插入图片描述
面着色
在这里插入图片描述
面着色可以转化为点着色来完成。
定理:地图G是k-面可色的,当且仅当它的对偶图G*是k-可色图。
定理:若图G是一个简单平面图,则该图中至少存在一个度数小于或等于5的结点。
五色定理:设G=<V,E>是任意给定的一个连通简单平面图,则G的点色数为5。
四色猜想:连通简单平面图的色数不超过4。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值