RNN和LSTM学习笔记

RNN

RNN简介

参考知乎
循环神经网络
在这里插入图片描述
对于处理连续文本,我们需要联系句子上下文的内容,例如“我 吃 水果”。
我们需要将三个词一次输入我们的输入层中,三个词分不同的时刻输入。因此,每个时刻的权值W都是继承上个权值S,而新的S又由输入X和W共同决定,更为详细的图:
在这里插入图片描述
我们将每次的输出更新,会得到下面这样的公式参考链接
在这里插入图片描述
很容易看出,RNN存在两个问题,梯度消失和梯度爆炸,这也是LSTM提出的原因。

BRNN

link
显然我们再看一个句子的时候不仅会结合上文语义,也会结合下文
在这里插入图片描述
我们建立这样的时序网络,其中隐藏层有两个权值,一个是前向层,一个是后向层,分别计算前后的和,合并为输出。

DRNN

多个隐藏层,深度循环神经网络

LSTM

LSTM与普通RNN不同之处在于中间的隐藏层
在这里插入图片描述
LSTM的关键,就是怎样控制长期状态c。在这里,LSTM的思路是使用三个控制开关。第一个开关,负责控制继续保存长期状态c;第二个开关,负责控制把即时状态输入到长期状态c;第三个开关,负责控制是否把长期状态c作为当前的LSTM的输出。

LSTM用两个门来控制单元状态c的内容,一个是遗忘门(forget gate),它决定了上一时刻的单元状态 c t − 1 c_{t-1} ct1有多少保留到当前时刻 c t c_t ct;另一个是输入门(input gate),它决定了当前时刻网络的输入 x t x_t xt有多少保存到单元状态 c t c_t ct。LSTM用输出门(output gate)来控制单元状态 c t c_t ct有多少输出到LSTM的当前输出值 h t h_t ht
在这里插入图片描述
这里 ⨀ \bigodot 是按元素乘,也就是相同格式的矩阵对应每一位相乘

Bi-LSTM

我的理解是将两个LSTM,一个对词序正向,一个对词序反向,然后将两个LSTM的最终输出结合起来输出
在这里插入图片描述
对于上图,我们将 h 0 h_0 h0, h 1 h_1 h1, h 2 h_2 h2结合起来
在这里插入图片描述
对于语义情感分析,我们常把 h L 2 h_{L2} hL2 h R 2 h_{R2} hR2结合起来输出

LSTM代码分析

代码改自网络,使用LSTM处理MNISIT数据集

import torch
import torch.utils.data as Data
import torchvision
import matplotlib.pyplot as plt
import numpy as np
BATCH_SIZE = 50

class RNN(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.rnn=torch.nn.LSTM(
            input_size=28,#指代输入词向量的维度
            hidden_size=64,#隐藏层的维度,因为隐藏层中含有h和c两个参数,两个参数也是被一个矩阵作用后与输入x经过矩阵作用后相运算
            num_layers=1,#指代有几层LSTM
            batch_first=True,#一般我们输入数据的格式是(batch_size, seqlength, feature),
            # 但这里默认是false,也就是按照(seqlength,batch_size,feature)的顺序,所以我们需要设置为True
            bidirectional=False,#这个参数决定是否为双向LSTM
            dropout=0,#为了防止过拟合的一种方法,默认是0
            bias=True#默认为True,设置偏置
        )
        self.out=torch.nn.Linear(in_features=64,out_features=10)

    def forward(self,x):
        # 以下关于shape的注释只针对单向
        # output: [batch_size, time_step, hidden_size]
        # h_n: [num_layers,batch_size, hidden_size] # 虽然LSTM的batch_first为True,但是h_n/c_n的第一维还是num_layers
        # c_n: 同h_n
        output,(h_n,c_n)=self.rnn(x)
        print(output.size())
        # output_in_last_timestep=output[:,-1,:] # 也是可以的
        output_in_last_timestep=h_n[-1,:,:]
        # print(output_in_last_timestep.equal(output[:,-1,:])) #ture
        x=self.out(output_in_last_timestep)
        return x

if __name__ == "__main__":
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    print(device)
    # 1. 加载数据
    training_dataset = torchvision.datasets.MNIST("./mnist", train=True,
                                                  transform=torchvision.transforms.ToTensor(), download=True)
    dataloader = Data.DataLoader(dataset=training_dataset,
                                 batch_size=BATCH_SIZE, shuffle=True, num_workers=2)
    # showSample(dataloader)
    test_data=torchvision.datasets.MNIST(root="./mnist",train=False,
                                         transform=torchvision.transforms.ToTensor(),download=False)
    test_dataloader=Data.DataLoader(
        dataset=test_data,batch_size=1000,shuffle=False,num_workers=2)
    testdata_iter=iter(test_dataloader)
    test_x,test_y=testdata_iter.next()
    test_x=test_x.view(-1,28,28)
    # 2. 网络搭建
    net=RNN()
    net.to(device)
    #网络参数全部在cuda上
    # 3. 训练
    # 3. 网络的训练(和之前CNN训练的代码基本一样)
    optimizer=torch.optim.Adam(net.parameters(),lr=0.001)
    loss_F=torch.nn.CrossEntropyLoss()
    for epoch in range(1): # 数据集只迭代一次
        for step, input_data in enumerate(dataloader):
            input_data=input_data
            x,y=input_data
            x = x.to(device)
            y = y.to(device)
            #将数据移到cuda上
            pred=net(x.view(-1,28,28))

            loss=loss_F(pred,y) # 计算loss
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            if step%50==49: # 每50步,计算精度
                with torch.no_grad():
                    test_x = test_x.to(device)
                    test_y = test_y.to(device)
                    # 将数据移到cuda上
                    test_pred=net(test_x)
                    prob=torch.nn.functional.softmax(test_pred,dim=1)
                    pred_cls=torch.argmax(prob,dim=1)
                    acc=(pred_cls==test_y).sum().to('cpu').numpy()/pred_cls.size()[0]
                    # numpy的计算必须在cpu上
                    print(f"{epoch}-{step}: accuracy:{acc}")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值