天勤接口查询所有期货品种交易时间

from tqsdk import TqApi
api = TqApi(web_gui=True, auth=#使用自己的天勤账户和密码)
map = {k:v for k,v in api._data["quotes"].items() if not k.startswith("KQ") and v["expired"] == False}

def split2exprod( exchinstr: str):
    exchange,instr = exchinstr.split('.')
    product="".join(filter(str.isalpha,instr))
    l= [exchange, product]
    return l

result={}
for k,v in map.items():
    if v.ins_class == 'FUTURE_OPTION' :
        rl = split2exprod(v.underlying_symbol)
    elif v.ins_class == 'FUTURE':
        rl = split2exprod(k)
    else:
        pass # pass FUTURE_COMBINE
    if rl[0] not in result.keys():
        result[rl[0]] = {rl[1] : v.trading_time}
    else:
        if rl[1] not in result[rl[0]].keys():
            result[rl[0]].update( { rl[1] : v.trading_time })

for exch,v in result.items():
    print("交易所:",exch)
    for p,t in v.items():
        print("品种: ",p," 交易时间: 日盘 ",tuple(t['day'])," 夜盘 ",t['night'])

api.close()

 

期货量化交易系统中,时间同步是一个非常关键的问题。为了保证回测结果的准确性和可靠性,在进行策略测试之前需要确保所有的时间戳数据保持一致。 对于平台而言,它提供了高精度的历史行情数据,并支持毫秒级甚至更细粒度的数据获取能力。当涉及到跨市场、多品种联立运行或者高频交易场景下时,精确到微秒级别的时间同步就显得尤为重要了。 解决时间同步问题通常有以下几种方法: 1. **使用UTC标准**:将本地时间和服务器时间都转换成协调世界时(Universal Time Coordinated),以此消除因地域差异造成的影响; 2. **NTP服务校准**:通过网络时间协议(Network Time Protocol)定期调整计算机系统的当前时间至国际原子钟所指定的标准值附近; 3. **数据中心内部优化**:如果是在一个较大的机构内,则可以考虑建立专用的时间源设备并部署相应的对时机制,使得各节点之间的误差控制在一个很小范围内; 4. **数据预处理阶段修正偏差**:针对已经存在的历史记录中存在的微小偏差情况,可以在导入数据库前先做一次批量处理操作来进行补偿; 5. **基于事件驱动模型的设计思路**:尽量避免依赖绝对时间点触发动作,转而采用相对间隔的方式来规划任务流程,减少对外部因素干扰敏感度; 6. **选择合适的时间精度**:根据实际需求选取恰当的时间单位作为最小刻度尺,过高或过低都会影响最终效果评估的真实性以及计算效率; 7. **注意交易所自身规则限制**:不同类型的资产其撮合成交确认周期有所不同,请务必提前查阅官方文档说明文件了解清楚相关规定后再动手实践。 总之,在构建复杂的量化分析框架过程中一定要充分重视起时间要素的重要性,只有这样才能更好地模拟出接近真实环境下的投资决策过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值