自动驾驶—MPC模型预测控制算法工程实现

本文详细介绍了MPC控制器在自动驾驶中的应用,重点讨论了其算法原理,并通过MATLAB实现了MPC控制算法。通过与实际车辆参数和控制误差的对比,验证了MPC算法在计算目标转角上的正确性和合理性。
摘要由CSDN通过智能技术生成

概要

考虑到之前在我的公众号写的MPC控制器得到了大家的很多阅读和转载量,我将此文章再完善一下,让人更容易理解些,希望对大家有帮助。

研究对象

LQR的研究对象是现代控制理论中以状态空间方程形式给出的线性系统。MPC的研究对象可以是线性系统,也可以是非线性系统,只不过为了某些需求,如时效性,计算的便捷,操控性等,一般会将非线性系统转换为线性系统进行计算。看过Apoll的LQR和MPC源码的朋友会知道,MPC和LQR很类似。

Apollo中,LQR和MPC控制器都选用的单车动力学模型作为研究对象,单车动力学模型为非线性系统,但LQR和MPC控制器的目的是为了求最优控制解,在具体的优化求解时,均通过线性化方法将状态方程转化为线性方程进行求解,所以,可以说apollo中LQR和MPC控制器的研究对象均为线性系统。看过Apoll的LQR和MPC源码的朋友会知道,MPC和LQR很类似。

MPC 控制器算法原理

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jack Ju

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值