农业害虫相关论文调研

文章探讨了农业害虫识别领域的最新进展,包括使用CNN和Transformer混合架构进行分类、集成学习方法区分野生动物与害虫、深度学习模型识别植物病害及昆虫分层分类等。这些研究着重于新任务的设计和解决实际应用中的问题,如类别模糊和长尾分布。
摘要由CSDN通过智能技术生成

        好长时间没有更新博客了,前段时间集中调研了一下农业害虫近期的工作。目前单纯的害虫识别有点难发论文了,最好做一些新任务。

        我按照期刊类别简单整理了几篇论文。

Ecological Informatics

CNN and transformer framework for insect pest classification6 October 2022

        提出了一种CNNTransformer的混合架构进行害虫分类IP10274.897%D099.155%Li97.246% 

 A method for automatic identification and separation of wildlife images using ensemble learning12 August 2023

    提出了一种集成方法,目的是区分野生动物和人、牲畜。方法比较简单,但应用背景介绍得很好。

    自己采集、标注数据集(未公开,数据集很不平衡,野生动物样本很少),使用5种现有分类模型进行实验。

    一种保守集成方法:只要有一个模型认为该图像为野生动物,就将这张图像划分到野生动物类别下,想要对野生动物实现高召回率。

A novel multi-head CNN design to identify plant diseases using the fusion of RGB images21 January 2023

    提出了一种新颖的深度学习架构,利用 RGB 和分割图像的融合作为输入来识别植物病害。识别模型用的现成的DenseNet121,创新型一般,没太说清。 

Hierarchical classification of insects with multitask learning and anomaly detection28 August 2023

    提出了一种对图像中的昆虫进行分层分类(新任务)的算法,对属于3个目、5个科和9个物种的昆虫进行层次分类。目的是稳健地检测未见过的物种,同时正确分类其较高的分类等级。与农业应用(生物入侵、海关)结合紧密!

    自己构建了数据集,其中一个数据集公开。用的现有分类模型,提出了新的损失函数对不同分类层次之间的关系进行约束。

Engineering Applications of Artificial Intelligence

 A novel multi-label pest image classifier using the modified Swin Transformer and soft binary cross entropy loss6 September 2023

    IP102数据集中图像存在类别模糊问题,提出一张图像可以标多个标签。

    将传统的单标签害虫分类任务转换为多标签害虫分类任务(新任务),以更合适地解决IP102害虫识别中的类别模糊问题。设计一种两阶段学习算法来解决如何用单标签数据集训练多标签分类模型的问题。

A two-stream network with complementary feature fusion for pest image classification15 June 2023

    提出了一种深度融合网络来提高自然环境中害虫图像的分类精度,由卷积神经网络(ConvNeXt)和用于解耦训练的 Swin Transformer 模型组成,实验证明了该模型可以解决长尾分布问题

    IP10276.1%D098.5%

Computers and Electronics in Agriculture (农业方向Top)

ODP-Transformer: Interpretation of pest classification results using image caption generation techniques25 April 2023 

    引入Image Caption Generation来解释害虫图像分类的结果。提出了ODP-Transformer两阶段模型,第一阶段是基于Faster R-CNN 框架的害虫部位检测器。第二阶段包含三个模块:部位序列编码器、描述解码器和分类解码器,分别用于图像标题生成任务(新任务)分类任务

    自己收集、标注了APTV-99数据集(未公开),8234张可用图像,共94种害虫。详细介绍了数据集构建过程、模型架构,实验非常充分。

Neurocomputing 

Recognition and counting of wheat mites in wheat fields by a three-step deep learning method12 January 2021 

    对田间的拍摄图像中对小麦螨虫进行自动分类和计数(新任务)。本文提出了一种three-step的深度学习方法进行识别和计数。

    各阶段用的都是一些现有模型,创新点在于应用和方法流程设计。

 Towards densely clustered tiny pest detection in the wild environment3 January 2022

  • 提出一种新的目标检测任务densely clustered tiny pest detection密集簇微小(DCT)物体检测。即提出了判定为该任务(非小目标检测)的评价指标。
  • 提出一种新的 DCTDet 网络来解决 DCT 检测任务的挑战。
  • 构建与 DCT 任务相关的图像数据集 APHID-4K(未公开)。

    论证与实验分析很充分。

 

        这里放一下去年整理的农业动植物论文的链接:

农业虫害识别相关论文——调研整理_基于深度学习昆虫种类识别相关文献-CSDN博客

农业动物相关数据集与算法——调研整理_目标检测羊数据集_BXDBB的博客-CSDN博客 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值