家禽疾病诊断
Machine Learning Dataset for Poultry Diseases Diagnostics
中小型家禽养殖者的家禽疾病诊断注释数据集由家禽粪便图像组成。这些家禽粪便图像是在 2020 年 9 月至 2021 年 2 月期间在坦桑尼亚的阿鲁沙和乞力马扎罗地区使用手机上的开放数据工具包 (ODK) 应用程序拍摄的。典型的正常粪便物质是“健康”类和球虫病,“球菌”类取自家禽养殖场。一周后,这些鸡被接种了沙门氏菌病疫苗,并从患病鸡身上拍摄了“鲑鱼”类的粪便图像。这些鸡还接种了新城疫疫苗,并在三天内拍摄了“ncd”类的粪便图像。
所有图像都在.zip 文件中;“cocci.zip”有 2103 张图片,“healthy.zip”有 2057 张图片,“salmo.zip”有 2276 张图片,“ncd.zip”有 376 张图片。共标记了 6,812 个图像文件。
“imgObjDet_Yolo.zip”和“imgSegmentation.zip”文件分别包含用于在 YOLO 框架上进行对象检测的相应注释和用于语义分割任务的 JSON 文件。
公开数据集,数据多,都有标注。
相关论文:Deep Convolutional Neural Network for Chicken Diseases Detection
代码未公开。
品种分类
On farm automatic sheep breed classification using deep learning
羊品种的自动识别对养羊业很有价值。绵羊生产者需要识别不同品种的绵羊来估计他们羊群的商业价值。然而,在许多情况下,农民发现在没有大量经验的情况下识别绵羊品种是一项挑战。 DNA 测试是品种鉴定的另一种方法。然而,在生产环境中对大量绵羊进行实时评估是不切实际的。因此,在农场环境中操作时,能够有效且准确地复制绵羊品种专家的识别能力的自主方法对行业是有益的。我们在这个领域的最初贡献包括:在一个养羊场建立一个原型计算机视觉系统,建立一个数据库,该数据库包含在一个农场捕获的四个品种的 1642 张羊图像,并由专家用其品种进行标记,并使用机器训练一个羊品种分类器学习和计算机视觉的平均准确率达到 95.8%,标准差为 1.7。该分类器可以帮助养羊户准确有效地区分品种,并允许更准确地估计肉产量和成本管理。
代码未公开,