A. k-rounding(gcd)

题目来源:http://codeforces.com/problemset/problem/858/A

For a given positive integer n denote its k-rounding as the minimum positive integer x, such that x ends with k or more zeros in base 10 and is divisible by n.

For example, 4-rounding of 375 is 375·80 = 3000030000 is the minimum integer such that it ends with 4 or more zeros and is divisible by 375.

Write a program that will perform the k-rounding of n.

Input

The only line contains two integers n and k (1 ≤ n ≤ 1090 ≤ k ≤ 8).

Output

Print the k-rounding of n.

Examples
input
375 4
output
30000
input
10000 1
output
10000
input
38101 0
output
38101
input
123456789 8
output
12345678900000000
题目意思大概是:输入一个数n(因数),然后再输入一个数m(末尾零的个数);求末尾有m个0的数可以整除n;

运用gcd函数(求公因数)可以将个这道题写出来,但要注意数据的范围(int 不够要 l l):

#include<stdio.h>
#include<string.h>
#include<math.h>

#include<string>
#include<iostream>
#include<algorithm>
using namespace std;

#define ll long long
//#define da    10000000
//#define xiao -10000000
#define clean(a,b) memset(a,b,sizeof(a))

ll gcd(int n,int z)					//gcd函数求最大公因数 
{
	return z?gcd(z,n%z):n;
}

int main()
{
	ll n,k;
	scanf("%d%d",&n,&k);
	int i,j,z=1,can=1;
	ll w=1;
	for(i=0;i<k;++i)
		z=z*10;						//末尾0的个数 
	int da=n>z?n:z;					//n和z(10^k)的公因数 
	int xiao=n<z?n:z;
	
	ll yin=gcd(xiao,da);			//求最大公因数 
	
	printf("%lld\n",(n*z)/yin);		//(n*z ÷最大公因数)等于最小公倍数 
}


求出最大公倍数就行了;


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值