矩阵基础
矩阵是一个矩形排列的数表
最早人们为了解决方程组求解问题发明了矩阵
矩阵
由m x n个数aij(i、j都是从1到m、n的整数)排成的m行n列的数表
(a11a12⋯a1na21a22⋯a2n⋮⋮⋱⋮am1am2⋯amn)
\begin{pmatrix}
a_{11}&a_{12}&\cdots&a_{1n}\\
a_{21}&a_{22}&\cdots&a_{2n}\\
\vdots&\vdots&\ddots&\vdots\\
a_{m1}&a_{m2}&\cdots&a_{mn}
\end{pmatrix}
⎝⎜⎜⎜⎛a11a21⋮am1a12a22⋮am2⋯⋯⋱⋯a1na2n⋮amn⎠⎟⎟⎟⎞
称为m x n矩阵
通常使用黑体大写英文字母表示矩阵,上式可简记为A=[aij]mxn或Amxn
矩阵可以用方括号或圆括号表示
矩阵中的数aij称为矩阵的元,其中i表示行,j表示列
行矩阵:只有一行的矩阵
列矩阵:只有一列的矩阵
nxn矩阵与一般称为n阶矩阵或方阵。方阵中从左上角到右下角的连线称为主对角线;从右上角到左下角的连线称为副对角线。位于主对角线上的元素称为矩阵的对角元,对角元上元素i=j
零矩阵:所有元素都为0的矩阵,记为O,用Omxn代表mxn的零矩阵
三角形矩阵:如下所示三种矩阵分别称为对角矩阵、上三角矩阵、下三角矩阵。三角形矩阵中对角线上下方全为0的部分可以省略不写
(a110⋯00a22⋯0⋮⋮⋱⋮00⋯ann)
\begin{pmatrix}
a_{11}&0&\cdots&0\\
0&a_{22}&\cdots&0\\
\vdots&\vdots&\ddots&\vdots\\
0&0&\cdots&a_{nn}
\end{pmatrix}
⎝⎜⎜⎜⎛a110⋮00a22⋮0⋯⋯⋱⋯00⋮ann⎠⎟⎟⎟⎞
(a11a12⋯a1n0a22⋯a2n⋮⋮⋱⋮00⋯ann) \begin{pmatrix} a_{11}&a_{12}&\cdots&a_{1n}\\ 0&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ 0&0&\cdots&a_{nn} \end{pmatrix} ⎝⎜⎜⎜⎛a110⋮0a12a22⋮0⋯⋯⋱⋯a1na2n⋮ann⎠⎟⎟⎟⎞
(a110⋯0a21a22⋯0⋮⋮⋱⋮an1an2⋯ann) \begin{pmatrix} a_{11}&0&\cdots&0\\ a_{21}&a_{22}&\cdots&0\\ \vdots&\vdots&\ddots&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn} \end{pmatrix} ⎝⎜⎜⎜⎛a11a21⋮an10a22⋮an2⋯⋯⋱⋯00⋮ann⎠⎟⎟⎟⎞
对角矩阵也可以记为diag(a11,…,ann)
单位矩阵:对角元都为1的对角矩阵,用E或I表示,可以用**En或In**指明单位矩阵的阶数
同型矩阵:若矩阵A和B的行数相同、列数相等,则称两矩阵为同型矩阵
若矩阵A和B为同型矩阵且它们对应的元素都相等,则称两矩阵相等,记作A=B
元素都是实数的矩阵叫实矩阵;元素是复数的矩阵叫复矩阵
所有mxn的实矩阵的集合记为Rmxn
1x1的矩阵一般写成一个数
矩阵的线性运算
矩阵的加减法和数乘组成了矩阵的线性运算
线性包括齐次性和可加性,矩阵的三种运算方法就是对这两个性质的反映
矩阵的加减法就是对应元素相加减,数乘就是将每一个元素都乘同一个数
矩阵的线性运算符合
- 交换律
- 结合律
- 分配律
- 消去律
矩阵与方程组
含有m个一次方程,n个未知数的方程组称为m x n型线性方程组,简称m x n型方程组
一般形式为
KaTeX parse error: No such environment: equation at position 8:
\begin{̲e̲q̲u̲a̲t̲i̲o̲n̲}̲
\left \{
\begi…
可将其分为未知数、系数、常数三个部分,表示为矩阵形式Ax=b
其中
A=(a11a12⋯a1na21a22⋯a2n⋮⋮⋱⋮am1am2⋯amn)
A=\begin{pmatrix}
a_{11}&a_{12}&\cdots&a_{1n}\\
a_{21}&a_{22}&\cdots&a_{2n}\\
\vdots&\vdots&\ddots&\vdots\\
a_{m1}&a_{m2}&\cdots&a_{mn}
\end{pmatrix}
A=⎝⎜⎜⎜⎛a11a21⋮am1a12a22⋮am2⋯⋯⋱⋯a1na2n⋮amn⎠⎟⎟⎟⎞
x=(x1x2⋮xn) x=\begin{pmatrix} x_1\\ x_2\\ \vdots\\ x_n \end{pmatrix} x=⎝⎜⎜⎜⎛x1x2⋮xn⎠⎟⎟⎟⎞
b=(b1b2⋮bm) b=\begin{pmatrix} b_1\\ b_2\\ \vdots\\ b_m \end{pmatrix} b=⎝⎜⎜⎜⎛b1b2⋮bm⎠⎟⎟⎟⎞
对应未知数组成的矩阵、系数矩阵、常量矩阵
三个矩阵合在一起可以形成方程组的增广矩阵;当b=0时,得到方程组为齐次线性方程组;否则称为非齐次线性方程组
上述方程的增广矩阵为
[A,b]=(a11a12⋯a1nb1a21a22⋯a2nb2⋮⋮⋮⋮am1am2⋯amnbm)
[A,b]=\begin{pmatrix}
a_{11}&a_{12}&\cdots&a_{1n}&b_1\\
a_{21}&a_{22}&\cdots&a_{2n}&b_2\\
\vdots&\vdots&&\vdots&\vdots\\
a_{m1}&a_{m2}&\cdots&a_{mn}&b_m
\end{pmatrix}
[A,b]=⎝⎜⎜⎜⎛a11a21⋮am1a12a22⋮am2⋯⋯⋯a1na2n⋮amnb1b2⋮bm⎠⎟⎟⎟⎞
可以使用矩阵乘法将方程组的系数矩阵和方程组中的未知数矩阵的转置重新组合为方程组
矩阵乘法
首先设想一个方程组
KaTeX parse error: No such environment: equation at position 8: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲}̲ \left \{ \begi…
忽略右边的bn,可以通过向量点积a⃗⋅b⃗=x1x2+y1y2\vec{a}\cdot\vec{b}=x_1x_2+y_1y_2a⋅b=x1x2+y1y2联想到每个式子都能对应上两个n维向量的点积m⃗⋅n⃗=x1x2+y1y2+⋯+m1m2+n1n2\vec{m}\cdot\vec{n}=x_1x_2+y_1y_2+\cdots+m_1m_2+n_1n_2m⋅n=x1x2+y1y2+⋯+m1m2+n1n2
则可以使用1xn的矩阵来表示n维向量这样就能使用两个矩阵的“点积”表示整个方程组
如下所示
$$
\begin{pmatrix}
x_1&x_2&\cdots&x_n
\end{pmatrix}
\cdot
\begin{pmatrix}
a_{11}&a_{12}&\cdots&a_{1n}\
a_{21}&a_{22}&\cdots&a_{2n}\
\vdots&\vdots&\ddots&\vdots\
a_{m1}&a_{m2}&\cdots&a_{mn}
\end{pmatrix}
这样的表述并不规范,于是我们使用矩阵乘法和转置来表示这个方程组
这样的表述并不规范,于是我们使用矩阵乘法和转置来表示这个方程组
这样的表述并不规范,于是我们使用矩阵乘法和转置来表示这个方程组
{\begin{pmatrix}
x_1&x_2&\cdots&x_n
\end{pmatrix}}^T
\begin{pmatrix}
a_{11}&a_{12}&\cdots&a_{1n}\
a_{21}&a_{22}&\cdots&a_{2n}\
\vdots&\vdots&\ddots&\vdots\
a_{m1}&a_{m2}&\cdots&a_{mn}
\end{pmatrix}
$$
矩阵乘法:矩阵A=[aij]mxk和B=[bij]kxn的乘积是一个m x n矩阵C=[cij]mxn。其中cij=ai1b1j+ai2b2j+⋯+aikbkj=∑l=1kailbljc_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{ik}b_{kj}=\sum_{l=1}^k a_{il}b_{lj}cij=ai1b1j+ai2b2j+⋯+aikbkj=∑l=1kailblj,记作AB=C
矩阵乘法运算需要满足以下条件
- A的行数等于B的列数
- 乘积C的行数等于A的行数,C的列数等于B的列数
- 乘积C的(i,j)元等于A的第i行和B的第j列对应元素的乘积之和
矩阵的乘法不能调换顺序
更具体的,矩阵乘法满足以下规则:
-
与数字之间的结合律
-
与矩阵之间的结合律
-
分配律
不满足交换律
满足交换律的矩阵称为可交换,可交换的矩阵必定是同阶方阵,但是可交换的充分条件没有确定的规律
单位矩阵E与同阶方阵相乘时都可交换
单位矩阵与任意矩阵的的乘积都等于它本身
可以根据矩阵乘法定义矩阵的幂运算,特别地,(AB)k≠AkBk(AB)^k \neq A^k B^k(AB)k=AkBk,但AkAl=Ak+lA^k A^l=A^{k+l}AkAl=Ak+l且(Ak)l=Akl(A^k)^l=A^{kl}(Ak)l=Akl
特殊规律
- 两个同阶上三角形/下三角形矩阵的乘积仍为上三角形/下三角形矩阵
- 两个同阶对角矩阵的乘积仍为对角矩阵
- 两个同阶对角矩阵相乘时只需将对角元相乘
矩阵转置
转置:把m x n矩阵A的行和列的位置互换得到的n x m矩阵叫做A的转置矩阵,记作AT或A’
矩阵的转置符合以下规律
- 相反律
- 分配律
- 结合律
特别地,矩阵转置有以下特点
(AB)T=BTAT(AB)^T=B^T A^T(AB)T=BTAT
(Ak)T=(AT)k(A^k)^T=(A^T)^k(Ak)T=(AT)k
(A!A2⋯Ak)T=ATk⋯A2TA1T(A_!A_2 \cdots A_k)^T=A^k_T \cdots A^T_2 A^T_1(A!A2⋯Ak)T=ATk⋯A2TA1T
对称矩阵与反称矩阵
对称矩阵:设A=[ai×j]n×nA=[a_{i \times j}]_{n \times n}A=[ai×j]n×n,若AT=AA^T=AAT=A,则称A为对称矩阵
反称矩阵:若AT=−AA^T=-AAT=−A,则称A为反称矩阵
对称矩阵中关于主对角线对称的元素相等;反称矩阵中对角元都为0,且关于主对角线对称的元素互为相反数
有特性:若A、B是同阶对称矩阵,可知AB是对称矩阵⇔AB=BAAB是对称矩阵 \Leftrightarrow AB=BAAB是对称矩阵⇔AB=BA
Am×nAn×mTA_{m \times n}A_{n \times m}^TAm×nAn×mT为(m阶)方阵且为对称矩阵
An×mTAm×nA_{n \times m}^TA_{m \times n}An×mTAm×n为(n阶)方阵且为对称矩阵
- A是对称矩阵,则AkA^kAk也是对称矩阵
- A是反对称矩阵,则k为偶数时AkA^kAk是对称矩阵;k为奇数时AkA^kAk是反对称矩阵
特殊结论
A和B分别是n阶对称矩阵和反称矩阵,P是n阶方阵,有以下结论:
- PTAPP^TAPPTAP是对称矩阵
- PTBPP^TBPPTBP是反称矩阵
- AB是反称矩阵⇔AB=BAAB是反称矩阵\Leftrightarrow AB=BAAB是反称矩阵⇔AB=BA
- AB-BA和AB+BA分别是对称矩阵和反称矩阵
A为n阶方阵,则A+ATA+A^TA+AT为对称矩阵,A−ATA-A^TA−AT是反称矩阵
同理,任意n阶方阵可以表示成一个对称矩阵和一个反称矩阵的和
对称矩阵之间相互
矩阵基本概念的深入理解
这部分内容掺杂有其他线性代数知识,推荐在学完所有内容后再翻阅
矩阵基本运算
相等
矩阵相等要求:
-
A、B矩阵是同型矩阵
-
A、B对应元素相等
对A=(aij)m×nA=(a_{ij})_{m\times n}A=(aij)m×n,B=(bij)s×kB=(b_{ij})_{s\times k}B=(bij)s×k,有:
-
m=s,n=k
-
aij=bija_{ij}=b_{ij}aij=bij
-
矩阵乘法
存在A≠O,B≠O而AB=OAB=O⇏O或B=O 存在A\neq O,B\neq O 而AB=O\\ AB=O \nRightarrow O 或 B=O 存在A=O,B=O而AB=OAB=O⇏O或B=O
有以下条件成立:
AB=AC,A≠O⇒A(B−C)=OA≠O⇏B=C
AB=AC,A\neq O\Rightarrow A(B-C)=O\\
A\neq O \nRightarrow B=C
AB=AC,A=O⇒A(B−C)=OA=O⇏B=C
矩阵的幂
A是一个n阶方阵,Am=AA⋯A(m个A)A^m=AA\cdots A(m个A)Am=AA⋯A(m个A)称为A的m次幂
一般(AB)m≠AmBm(AB)^m\neq A^mB^m(AB)m=AmBm
转置
将A的行与列互换得到的矩阵称为A的转置矩阵
实际上就是把aija_{ij}aij变成ajia_{ji}aji
A的转置矩阵满足以下运算律:
- (AT)T=A(A^T)^T=A(AT)T=A
- (kA)T=kAT(kA)^T=kA^T(kA)T=kAT
- (A+B)T=AT+BT(A+B)^T=A^T +B^T(A+B)T=AT+BT
- (AB)T=BTAT(AB)^T=B^TA^T(AB)T=BTAT
- 当m=n(A为方阵)时,∣AT∣=∣A∣|A^T|=|A|∣AT∣=∣A∣
与行列式运算的区分
∣kA∣=kn∣A∣≠k∣A∣一般∣A+B∣≠∣A∣+∣B∣A≠O⇏∣A∣≠0A≠B⇏∣A∣≠∣B∣ |kA|=k^n|A|\neq k|A| \\ 一般|A+B|\neq |A|+ |B|\\ A\neq O \nRightarrow|A|\neq 0 \\ A\neq B \nRightarrow |A|\neq |B| ∣kA∣=kn∣A∣=k∣A∣一般∣A+B∣=∣A∣+∣B∣A=O⇏∣A∣=0A=B⇏∣A∣=∣B∣
对于同阶方阵A、B,∣AB∣=∣A∣∣B∣|AB|=|A||B|∣AB∣=∣A∣∣B∣
矩阵定义的特殊理解
-
上/下三角矩阵:i>(<)j时,a_ij=0的矩阵
-
对称矩阵:满足AT=AA^T=AAT=A的矩阵
对于对称矩阵,恒有AT=A⇔aij=ajiA^T=A \Leftrightarrow a_{ij}=a_{ji}AT=A⇔aij=aji
-
反称矩阵:满足AT=−AA^T=-AAT=−A的矩阵
对于反称矩阵,恒有AT=−A⇔aij=−aji(i≠j),aii=0A^T=-A \Leftrightarrow a_{ij}=-a_{ji}(i\neq j),a_{ii}=0AT=−A⇔aij=−aji(i=j),aii=0
即对角线为0,其他元素互为相反数
-
正交矩阵:满足AT=A−1A^T=A^{-1}AT=A−1或AAT=ATA=EAA^T=A^TA=EAAT=ATA=E的矩阵
分块矩阵的特殊性质
- 若A、B分别为m、n阶方阵,则分块对角矩阵的幂为
∣ACOB∣n=∣AnCOBn∣ \left| \begin{matrix} A & C \\ O & B \\ \end{matrix} \right|^n= \left| \begin{matrix} A^n & C \\ O & B^n \\ \end{matrix} \right| ∣∣∣∣AOCB∣∣∣∣n=∣∣∣∣AnOCBn∣∣∣∣
-
若Am×nBn×s=OA_{m\times n}B_{n\times s}=OAm×nBn×s=O,将B、O按列分块,有
AB=A[β1,β2,⋯ ,βs]=[Aβ1,Aβ2,⋯ ,Aβ−s]=[0,0,⋯ ,0]AB=A[\beta_1,\beta_2,\cdots,\beta_s]=[A\beta_1,A\beta_2,\cdots,A\beta-s]=[0,0,\cdots,0]AB=A[β1,β2,⋯,βs]=[Aβ1,Aβ2,⋯,Aβ−s]=[0,0,⋯,0]
则
Aβi=0,βiA\beta_i=0,\beta_iAβi=0,βi是Ax=0的解
-
上面的结论可以扩展至按列分块和按行分块的列向量、行向量
可以通过将B、C按行/按列分块获得C=AB是B的 行向量/列向量的线性组合
逆矩阵的性质总结
A、B是n阶方阵,E是n阶单位矩阵,若AB=BA=E,则称A是可逆矩阵,称B是A的唯一逆矩阵,记作B=A−1B=A^-1B=A−1
由A各个元素对应的代数余子式按照元素的顺序排列形成的矩阵称为A的伴随矩阵,记作A*
有AA∗=A∗A=∣A∣EAA^*=A^*A=|A|EAA∗=A∗A=∣A∣E
A可逆的充要条件是∣A∣≠0|A|\neq 0∣A∣=0
当∣A∣≠0|A|\neq 0∣A∣=0时,A可逆且A−1=1∣A∣A∗A^{-1}=\frac{1}{|A|}A^*A−1=∣A∣1A∗
逆矩阵基本性质
- (A−1)−1=A(A^{-1})^{-1}=A(A−1)−1=A
- 若k≠0k\neq 0k=0,则(kA)−1=1kA−1(kA)^{-1}=\frac{1}{k}A^{-1}(kA)−1=k1A−1
- 若A、B是同阶可逆矩阵,则AB也可逆,且有以下结论
- (AB)−1=B−1A−1(AB)^{-1}=B^{-1}A^{-1}(AB)−1=B−1A−1(和行列式或伴随矩阵类似)
- ATA^TAT可逆且(AT)−1=(A−1)T(A^T)^{-1}=(A^{-1})^T(AT)−1=(A−1)T
- A+B不一定可逆,且(A+B)−1≠A−1+B−1(A+B)^{-1}\neq A^{-1}+B^{-1}(A+B)−1=A−1+B−1
- ∣A−1∣=∣A∣−1=1∣A∣|A^{-1}|=|A|^{-1}=\frac{1}{|A|}∣A−1∣=∣A∣−1=∣A∣1
求逆矩阵的方法总结
-
公式法
使用伴随矩阵和行列式直接代入公式
-
初等变换法
[A∣E]−(使用初等行变换)−>[E∣A−1]或对AE纵向排列的矩阵[A E]T使用初等列变换将其变成[E A−1]T [A|E]-(使用初等行变换)->[E|A^{-1}]\\ 或\\ 对AE纵向排列的矩阵[A\ E]^T使用初等列变换将其变成 [E\ A^{-1}]^T [A∣E]−(使用初等行变换)−>[E∣A−1]或对AE纵向排列的矩阵[A E]T使用初等列变换将其变成[E A−1]T -
定义法
求出A可逆
找到一个矩阵B,让AB=E
-
将A分解成若干个可逆矩阵的乘积
若A=BC,其中B、C均可逆,则A可逆,且A−1=(BC)−1=C−1B−1A^{-1}=(BC)^{-1}=C^{-1}B^{-1}A−1=(BC)−1=C−1B−1
-
分块矩阵的求逆
若A、B均是可逆方阵,则
$$
\left| \begin{matrix}
A & O \
O & B \
\end{matrix} \right|^{-1}\left| \begin{matrix}
A^{-1} & O \
O & B^{-1} \
\end{matrix} \right|
同理, 同理, 同理,
\left| \begin{matrix}
O & A \
B & O \
\end{matrix} \right|^{-1}\left| \begin{matrix}
O & A^{-1} \
B^{-1} & O \
\end{matrix} \right|
$$
此外,可以通过反证法或证明|A|=0的方法证明A不可逆
判断可逆矩阵的条件
以下命题互为充要条件:
- A是可逆方阵
- ∣A∣≠0|A|\neq 0∣A∣=0
- A的行向量组线性无关
- A的列向量组线性无关
- Ax=0有唯一零解
- Ax=b对任意b有唯一解
- r(A)=n
- A的所有特征值非零
对伴随矩阵的再理解
最容易忘记的定义:A*的第i列元素是A中第i行相应元素的代数余子式,计算A*时需要先转置A再按照行列对应关系写出代数余子式
最基础结论:AA∗=A∗A=∣A∣EAA^*=A^*A=|A|EAA∗=A∗A=∣A∣E
- 对任意n阶方阵A,都存在其伴随矩阵A*,且有
AA∗=A∗A=∣A∣EAA^*=A^*A=|A|EAA∗=A∗A=∣A∣E
∣A∗∣=∣A∣n−1|A^*|=|A|^{n-1}∣A∗∣=∣A∣n−1
当A可逆时,伴随矩阵和逆矩阵只相差一个倍数|A|
- 当∣A∣≠0|A|\neq0∣A∣=0时,有如下结论:
-
可逆与伴随矩阵:A∗=∣A∣A−1A^*=|A|A^{-1}A∗=∣A∣A−1,A−1=1∣A∣A∗A^{-1}=\frac{1}{|A|}A^*A−1=∣A∣1A∗,A=∣A∣(A∗)−1A=|A|(A^*)^{-1}A=∣A∣(A∗)−1
矩阵A可逆的充要条件:A的伴随矩阵A*可逆
-
伴随矩阵导致的矩阵总体性质变化
- 数乘矩阵:(kA)(kA)∗=∣kA∣E(kA)(kA)^*=|kA|E(kA)(kA)∗=∣kA∣E
- 转置矩阵:AT(AT)∗=∣AT∣EA^T(A^T)^*=|A^T|EAT(AT)∗=∣AT∣E
- 逆矩阵:A−1(A−1)∗=∣A−1∣EA^{-1}(A^{-1})^*=|A^{-1}|EA−1(A−1)∗=∣A−1∣E
- 伴随矩阵:A∗(A∗)∗=∣A∗∣EA^*(A^*)^*=|A^*|EA∗(A∗)∗=∣A∗∣E
以上面四种矩阵和其伴随矩阵相乘总可以获得其本身的行列式乘同阶的单位矩阵
- 对于所有矩阵,都有
- (AT)∗=(A∗)T(A^T)^*=(A^*)^T(AT)∗=(A∗)T
- (A−1)∗=(A∗)−1(A^{-1})^*=(A^*)^{-1}(A−1)∗=(A∗)−1
- (AB)∗=B∗A∗(AB)^*=B^*A^*(AB)∗=B∗A∗(类比(AB)−1=B−1A−1(AB)^{-1}=B^{-1}A^{-1}(AB)−1=B−1A−1)
- (A∗)∗=∣A∣n−2A(A^*)^*=|A|^{n-2}A(A∗)∗=∣A∣n−2A
- (kA)∗=kn−1A∗(kA)^*=k^{n-1}A^*(kA)∗=kn−1A∗(重要)
可见伴随矩阵、转置和求逆三者顺序变化不会造成影响,伴随矩阵的多次叠加等效于对原矩阵进行变换
-
r(A∗)=n,r(A)=nr(A*)=n,r(A)=nr(A∗)=n,r(A)=n
r(A∗)=1,r(A)=n−1r(A*)=1,r(A)=n-1r(A∗)=1,r(A)=n−1
r(A∗)=0,r(A)<n−1r(A*)=0,r(A)<n-1r(A∗)=0,r(A)<n−1
可见伴随矩阵也能反映原矩阵的一些性质
-
二阶矩阵伴随矩阵的简便求法:主对角线元素互换,副对角线元素变号
对称矩阵的一些规律
-
若A和B是同阶对称矩阵,则有结论:AB是对称矩阵 <=> A、B可交换 AB=BA
-
对于任意矩阵A,ATAA^TAATA和AATAA^TAAT都是对称矩阵
-
若A是n阶对称矩阵,P是n阶方阵,则PTAPP^TAPPTAP也是对称矩阵
即对称矩阵的所有合同矩阵都是对称矩阵