ResNet论文学习

《Deep Residual Learning for lmage Recognition》图像识别的深度残差学习

  • 作者:Kaiming He,Xiangyu Zhang,Shaoqing Ren,Jian Sun
  • 单位:Microsoft Research
  • 发表会议及时间:CVPR2016

作者简介

在这里插入图片描述

论文简介

  • 现象:更深的神经网络训练效果并不好。
  • 核心观念:深层次表征信息是很多视觉任务的核心点

“Deep neural networks are more difficult to train”

如何解决?

-方法:Residual Learning——残差学习

  • 学习残差函数——Residual Function
  • 容易优化,随深度提升,准确率提升显著
  • 很好地学习了深度特征表示,即通俗理解的高级语义信息
  • 获得ILSVRC2015分类任务第一名

效果?

  • 152层深度——ImageNet test set获得3.57%错误率
  • COCO目标检测数据集获得28%的相对提升
  • 2015年ImageNet detection、localization,COCO detection、segmentation第一名

在这里插入图片描述


问题:简单的叠加更多神轻网络层就可以吗?

现象:

  • 明显的梯度消失/爆炸问题,难以收敛——正则化解决
  • 模型退化问题凸显,准确率饱和—?
  • 模型退化问题并非过拟合导致,增加深度导致训练集错误率提升
  • 深层网络不能比浅层网络错误率更高——identity mapping(恒等映射)

在这里插入图片描述

相关工作

残差表示(Residual Representations):

  • 有效的浅层表示方法:
  • VLAD(vector of locally aggregated descriptors)
  • Fisher Vector:Probabilistic version of VLAD
  • 编码残差向量比编码原始向量表现更好

跳跃连接(Skip Connections):

  • MLP——通过线性层将输入连接到输出
  • 从中间层直接连接到辅助分类器
  • GoogLeNet——Inception Layer
  • Highway Networks——以来于数据,需要调整参数
  • Residual Learning——提高信息流效率

深度残差学习(Deep Residual Learning)

深度神经网络可以拟合高维非线性函数

  • 可以拟合 H(x),也可以拟合 H(x)-x
  • 令 F(x)=H(x)-x,则 H(X)=F(x)+x
  • 网络学习的难易程度不同
  • 解决梯度消失问题,增加的网络层学习成恒等映射,则不会提升训练误差

跳层的恒等映射:

  • 残差块:
    y=F(x,{Wi})+x

    • F——需要学习的残差映射,维度与x一致
    • F+x:跳跃连接,逐一加和,最后输出经过激活函数ReLU
    • 没有额外参数,不增加复杂度
    • F包含两个或两个以上网络层,否则表现为线性层y=W1x+x
  • 残差网络:

    • 两个简单的设计原则:
      • 具有相同输出特征图大小的网络层卷积核数量相同
      • 特征图大小减半,则卷积核数量加一倍,保证时间复杂度
    • 基于普通网络,插入跳跃连接
    • 维度增加时:
      • A.增加零输出
      • B.1x1卷积改变维度

在这里插入图片描述
在这里插入图片描述

实验和结果(Experiments and Results)

数据集:ImageNet 2012分类数据集,1000类别

  • 训练数据:128万图像
  • 验证数据:50000图像
  • 测试数据:100000图像
  • 输出:Top-1,Top-5错误率

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
建议只有在设计很深的网络的时候才使用BottleNeck。

总结

在这里插入图片描述

源码地址:

View on Github

可以参考b站讲解resnet50的视频,史上最详细ResNet50复现解析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天涯小才

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值