【人工智能】AI人工智能的重要组成部分,深入解析CNN与RNN两种神经网络的异同与应用场景和区别

从0到1:用Python构建你人生中的第一个人工智能AI模型

卷积神经网络(CNN)和循环神经网络(RNN)是两种广泛应用的神经网络模型。虽然它们都属于深度学习的范畴,但在结构、功能和应用场景上却有着显著的区别。本文将通过详细的分析、代码示例和实例,帮助你更好地理解这两种神经网络的特点与应用。

🔥主流AI大模型集聚地 + 上百种AI工作流落地场景 = 能用AI
🔥传送门:https://www.nyai.chat/chat?invite=nyai_1141439

一、卷积神经网络(CNN)详解

1. 特征与结构

卷积神经网络(Convolutional Neural Network,CNN)是一种专门用于处理图像数据的深度学习模型。其主要特征包括:

  • 局部连接:每个神经元只与前一层的局部区域相连,这种局部连接使得网络能够有效捕捉图像中的局部特征。
  • 权重共享:同一卷积核在整个输入数据上滑动,提取相同的特征,减少了模型的参数数量。
  • 池化层:通过下采样减少特征图的维度,保留重要信息。
    在这里插入图片描述
CNN的基本结构

一个典型的CNN结构包括以下几层:

  1. 输入层:接收原始图像数据,通常是一个多维数组(例如,RGB图像为三维数组),其形状为(高度,宽度,通道数)。

  2. 卷积层:通过卷积操作提取特征。卷积层使用多个卷积核(滤波器)在输入图像上滑动,生成特征图。每个卷积核能够捕捉到图像中的特定特征,如边缘、纹理等。

  3. 激活层:通常使用ReLU(Rectified Linear Unit)等激活函数引入非线性。激活函数的作用是将卷积层的线性组合结果转换为非线性输出,使得网络能够学习更复杂的特征。

  4. 池化层:通过下采样减少特征图的维度,保留重要信息。常用的池化方法有最大池化(Max Pooling)和平均池化(Average Pooling),它们能够有效降低计算复杂度并防止过拟合。

  5. 全连接层:将提取的特征映射到最终的输出。全连接层将前一层的所有神经元连接到当前层的每个神经元,通常用于分类任务。

  6. 输出层:生成最终的分类结果,通常使用softmax激活函数,将输出转换为概率分布,以便进行多类分类。

2. 应用场景

CNN主要用于图像分类、目标检测、图像分割等任务,因其在处理图像数据时表现出色。具体应用场景包括:

  • 图像分类:例如,使用CNN对手写数字进行分类(如MNIST数据集),模型能够识别出图像中的数字并进行分类。

  • 目标检测:在图像中识别并定位特定对象,例如使用YOLO(You Only Look Once)算法检测图像中的行人、车辆等。

  • 图像分割:将图像分割成多个区域,标记每个区域的类别,例如在医学图像分析中,使用CNN对肿瘤进行分割和识别。

  • 风格迁移:使用CNN将一幅图像的风格应用到另一幅图像上,例如将一张照片转换为梵高风格的画作。
    在这里插入图片描述

3. 代码示例

以下是一个使用Keras构建简单CNN模型的示例代码:

import tensorflow as tf
from tensorflow.keras import layers, models

# 构建CNN模型
model = models.Sequential()

# 输入层
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(64, 64, 3
利用tensorflow实现的卷积神经网络来进行MNIST手写数字图像的分类。 #导入numpy模块 import numpy as np #导入tensorflow模块,程序使用tensorflow来实现卷积神经网络 import tensorflow as tf #下载mnist数据集,并从mnist_data目录中读取数据 from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('mnist_data',one_hot=True) #(1)这里的“mnist_data” 是和当前文件相同目录下的一个文件夹。自己先手工建立这个文件夹,然后从https://yann.lecun.com/exdb/mnist/ 下载所需的4个文件(即该网址中第三段“Four files are available on this site:”后面的四个文件),并放到目录MNIST_data下即可。 #(2)MNIST数据集是手写数字字符的数据集。每个样本都是一张28*28像素的灰度手写数字图片。 #(3)one_hot表示独热编码,其值被设为true。在分类问题的数据集标注时,如何不采用独热编码的方式, 类别通常就是一个符号而已,比如说是9。但如果采用独热编码的方式,则每个类表示为一个列表list,共计有10个数值,但只有一个为1,其余均为0。例如,“9”的独热编码可以为[00000 00001]. #定义输入数据x和输出y的形状。函数tf.placeholder的目的是定义输入,可以理解为采用占位符进行占位。 #None这个位置的参数在这里被用于表示样本的个数,而由于样本个数此时具体是多少还无法确定,所以这设为None。而每个输入样本的特征数目是确定的,即为28*28。 input_x = tf.placeholder(tf.float32,[None,28*28])/255 #因为每个像素的取值范围是 0~255 output_y = tf.placeholder(tf.int32,[None,10]) #10表示10个类别 #输入层的输入数据input_x被reshape成四维数据,其中第一维的数据代表了图片数量 input_x_images = tf.reshape(input_x,[-1,28,28,1]) test_x = mnist.test.images[:3000] #读取测试集图片的特征,读取3000个图片 test_y = mnist.test.labels[:3000] #读取测试集图片的标签。就是这3000个图片所对应的标签
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

XinZong-千鑫

在线乞讨,行行好吧!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值