kaggle项目部署

流程

  1. 修改模块地址
  2. 打包项目
  3. 上传到kaggle Datasets
  4. 创建code文件,导入数据与项目
  5. 粘贴train.py文件,调整超参数,选择GPU
  6. save version,后台训练
  7. 查看训练结果

详细步骤

打开kaggle网站,点击dataset下的new dataset上传项目,如果使用的是自己的数据集,也需要一并上传(传打包好的)

在这里插入图片描述

然后进入code代码区,创建一个notebook
在这里插入图片描述

点击右边的add data,选择刚才上传的项目
在这里插入图片描述

再将原本项目的train文件下的代码复制粘贴到上图中的代码区,但需要做如下修改

  1. 文件开头加入如下代码
import sys
sys.path.append('../input')
  1. 导包的时候需要改成当前路径
#例如
#原本
from net import vgg16,vgg16_bn
#现在 
from yolov1.yolov1.net import vgg16,vgg16_bn
  1. 代码里使用的本地地址也需要更改成kaggle里的地址

最后选择GPU或者TPU来运行

在这里插入图片描述

要放到后台运行,点击右上角的save version,具体原因见最后
在这里插入图片描述

注意事项

  1. 每周30个小时GPU+20小时TPU
  2. 每个用户最多同时使用一个GPU
  3. 不提交使用后台运行的话,1小时掉线一次
  4. 提交后台运行,最多使用6小时,结果可保存
Kaggle 上使用 GPU 加速可以大大提高深度学习的训练速度。以下是一些可以在 Kaggle 上使用的 GPU 加速代码: 1. 导入必要的库和环境设置: ``` import tensorflow as tf import numpy as np import pandas as pd import matplotlib.pyplot as plt # 设置 GPU 环境 physical_devices = tf.config.list_physical_devices('GPU') tf.config.experimental.set_memory_growth(physical_devices[0], True) ``` 2. 加载数据集: ``` train_df = pd.read_csv('/kaggle/input/train.csv') test_df = pd.read_csv('/kaggle/input/test.csv') ``` 3. 创建数据生成器: ``` from tensorflow.keras.preprocessing.image import ImageDataGenerator train_datagen = ImageDataGenerator( rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, validation_split=0.2) train_generator = train_datagen.flow_from_directory( directory='/kaggle/input/train', target_size=(224, 224), batch_size=32, class_mode='binary', subset='training') validation_generator = train_datagen.flow_from_directory( directory='/kaggle/input/train', target_size=(224, 224), batch_size=32, class_mode='binary', subset='validation') ``` 4. 构建模型: ``` from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3))) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(128, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) ``` 5. 训练模型: ``` history = model.fit_generator( train_generator, steps_per_epoch=train_generator.samples // train_generator.batch_size, epochs=10, validation_data=validation_generator, validation_steps=validation_generator.samples // validation_generator.batch_size) ``` 在 Kaggle 上使用 GPU 加速可以通过在 Notebook 设置中选择 GPU 作为加速器来实现。将代码运行在 GPU 上需要一些额外的时间,但是相比 CPU 加速会大大减少训练时间。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

醋酸洋红就是我

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值