第P2周:彩色图片识别

第P2周:彩色图片识别

一、前期准备

1.设置GPU

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

device

2.导入数据

使用dataset下载CIFAR10数据集,并划分好训练集与测试集,使用dataloader加载数据,并设置好基本的batch_size.

train_ds = torchvision.datasets.CIFAR10('data',
                                        train=True,
                                        transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                        download=True)

test_ds = torchvision.datasets.CIFAR10('data',
                                       train=False,
                                       transform=torchvision.transforms.ToTensor(), # 将数据类型转为成Tensor
                                       download=True)

执行结果:

Files already downloaded and verified
Files already downloaded and verified
batch_size = 32

train_dl = torch.utils.data.DataLoader(train_ds,
                                       batch_size=batch_size,
                                       shuffle=True)

test_dl = torch.utils.data.DataLoader(test_ds,
                                      batch_size=batch_size)
# 取一个批次查看数据格式
# 数据的shape为:[batch_size, channel, height, weight]
# 其中batch_size为自己设定, channel, height, weight 分别是图片的通道数,高度,宽度
imgs, labels = next(iter(train_dl))
imgs.shape
torch.Size([32, 3, 32, 32])

3.数据可视化

squeeze() 函数的功能是从矩阵shape中去掉维度为1的。

import numpy as np

# 指定图片大小,图像大小宽度为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 5))
for i, imgs in enumerate(imgs[:20]):
    # 维度缩减
    npimg = imgs.numpy().transpose((1, 2, 0))
    # 将整个figure分成2行10列, 绘制第i+1个子图
    plt.subplot(2, 10, i+1)
    plt.imshow(npimg, cmap=plt.cm.binary)
    plt.axis('off')
plt.show()

在这里插入图片描述

二、构建简单的CNN网络

对于一般的CNN网络来说,都是由特征提取网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。

⭐1. torch.nn.Conv2d()详解

函数原型:

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode=‘zeros’, device=None, dtype=None)

关键参数说明:

  • in_channels ( int ) – 输入图像中的通道数

  • out_channels ( int ) – 卷积产生的通道数

  • kernel_size ( int or tuple ) – 卷积核的大小

  • stride ( int or tuple , optional ) – 卷积的步幅。默认值:1

  • padding ( int , tuple或str , optional ) – 添加到输入的所有四个边的填充。默认值:0

  • dilation (int or tuple, optional) - 扩张操作:控制kernel点(卷积核点)的间距,默认值:1。

  • padding_mode (字符串,可选) – ‘zeros’, ‘reflect’, ‘replicate’或’circular’. 默认:‘zeros’

关于dilation参数图解:

在这里插入图片描述

⭐2. torch.nn.Linear()详解

函数原型:

torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)

关键参数说明:

  • in_features:每个输入样本的大小

  • out_features:每个输出样本的大小

⭐3. torch.nn.MaxPool2d()详解

函数原型:

torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)

关键参数说明:

  • kernel_size:最大的窗口大小

  • stride:窗口的步幅,默认值为kernel_size

  • padding:填充值,默认为0

  • dilation:控制窗口中元素步幅的参数

构建一个简单的CNN网络。网络结构包括3个卷积层,每个卷积层后都跟随一个最大池化层,然后连接两个全连接层用于分类。

import torch.nn.functional as F

num_classes = 10  # 图片的类别数

class Model(nn.Module):
     def __init__(self):
        super().__init__()
         # 特征提取网络
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3)   # 第一层卷积,卷积核大小为3*3
        self.pool1 = nn.MaxPool2d(kernel_size=2)       # 设置池化层,池化核大小为2*2
        self.conv2 = nn.Conv2d(64, 64, kernel_size=3)  # 第二层卷积,卷积核大小为3*3   
        self.pool2 = nn.MaxPool2d(kernel_size=2) 
        self.conv3 = nn.Conv2d(64, 128, kernel_size=3) # 第二层卷积,卷积核大小为3*3   
        self.pool3 = nn.MaxPool2d(kernel_size=2) 
                                      
        # 分类网络
        self.fc1 = nn.Linear(512, 256)          
        self.fc2 = nn.Linear(256, num_classes)
     # 前向传播
     def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))     
        x = self.pool2(F.relu(self.conv2(x)))
        x = self.pool3(F.relu(self.conv3(x)))
        
        x = torch.flatten(x, start_dim=1)

        x = F.relu(self.fc1(x))
        x = self.fc2(x)
       
        return x

加载并打印模型

from torchinfo import summary
# 将模型转移到GPU中(我们模型运行均在GPU中进行)
model = Model().to(device)

summary(model)

执行结果:

=================================================================
Layer (type:depth-idx)                   Param #
=================================================================
Model                                    --
├─Conv2d: 1-1                            1,792
├─MaxPool2d: 1-2                         --
├─Conv2d: 1-3                            36,928
├─MaxPool2d: 1-4                         --
├─Conv2d: 1-5                            73,856
├─MaxPool2d: 1-6                         --
├─Linear: 1-7                            131,328
├─Linear: 1-8                            2,570
=================================================================
Total params: 246,474
Trainable params: 246,474
Non-trainable params: 0
=================================================================

三、训练模型

1.设置超参数

设置超参数并定义优化器。使用交叉熵损失(CrossEntropyLoss)作为损失函数,使用随机梯度下降(SGD)作为优化器。

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

2.编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

3.编写测试函数

测试函数与训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器。

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

4.正式训练

epochs     = 20
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

执行结果:

Epoch:  1, Train_acc:13.4%, Train_loss:2.277, Test_acc:23.8%, Test_loss:2.127
Epoch:  2, Train_acc:26.1%, Train_loss:1.999, Test_acc:29.5%, Test_loss:1.900
Epoch:  3, Train_acc:34.1%, Train_loss:1.805, Test_acc:34.6%, Test_loss:1.785
······
······
Epoch: 18, Train_acc:70.9%, Train_loss:0.840, Test_acc:66.1%, Test_loss:0.987
Epoch: 19, Train_acc:71.6%, Train_loss:0.809, Test_acc:66.4%, Test_loss:0.964
Epoch: 20, Train_acc:72.9%, Train_loss:0.777, Test_acc:68.1%, Test_loss:0.931
Done

四、结果可视化

绘制训练和测试阶段的准确率和损失曲线。

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

执行结果:

在这里插入图片描述

五、学习总结

通过学习编写彩色图片识别的深度学习程序,学会了基于PyTorch框架构建、训练并验证一个用于识别 CIFAR-10 数据集的卷积神经网络(CNN)模型:

  1. 数据加载和预处理:首先使用 torchvision.datasets.CIFAR10 方法加载 CIFAR-10 数据集,并使用 torchvision.transforms.ToTensor() 将图片数据转化为 PyTorch Tensor。
  2. 模型构建:定义了一个 CNN 模型,该模型包含三个卷积层(Conv2d)、三个最大池化层(MaxPool2d)和两个全连接层(Linear)。ReLU 作为非线性激活函数用于卷积层和全连接层。
  3. 模型训练:定义了训练函数(train),在每个训练轮次(epoch)中,该函数会迭代训练数据集,计算模型的预测结果和真实标签之间的交叉熵损失,并使用 SGD 优化器更新模型参数。
  4. 模型验证:定义了测试函数(test),该函数会在每个训练轮次结束后,在测试数据集上验证模型的性能,并计算模型的准确率和损失。
  5. 结果可视化:使用 matplotlib 绘制训练和验证准确率以及损失的曲线,以便于观察模型在训练过程中的表现。
  6. 超参数设置:学习率、批次大小、训练轮次等都是可以调整的超参数,这些超参数的设定可能会显著影响模型的性能。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值