深度估计-04-Deep Ordinal Regression Network for Monocular Depth Estimation

这是一篇有监督深度估计的文章。在2018年Kitti排行榜上Rank1

参考code (pytorch):  https://github.com/dontLoveBugs/DORN_pytorch/

本文做出两方面的贡献:

  • 将深度估计这个回归问题转化为多个离散的二分类问题。
  • 使用ASPP网络融合多尺度信息

一、Spacing-Increasing Discretization

作者认为,在单目深度估计时,深度越远处,信息量会越少,因此深度大的地方,预测的误差变大的容忍度是比较高的。这可以通过减小对深度大的像素点的惩罚来实现。

下图中,第一行是回归的做法,预测一个在\left ( \alpha ,\beta \right ) 间的浮点数作为深度。而二分类做法可以将\left ( \alpha ,\beta \right ) 划分为K 个间隔,对K 个间隔进行二分类。 

本文的二分类做法,为了减少对深度较远处的惩罚,将深度从均等分布转化到对数分布。从而使得

深度较远处的区分间隔较大 ,提高了容错。具体计算方式如下公式所示:

(提到\alpha ^{*}\alpha +1,个人认为有两方面有原因,一是因为代码在计算时,要计算在间隔左边还是右边,如果是\alpha=0的情况,则左边没有意义。二是因为在SID公式中不能除0,但是这通常是加上一个小余量1e-8来解决,所以我认为+1的原因是前者,这样更容易理解。)

在loss具体实现过程中,会对每个间隔的输出概率做二分类交叉熵计算。输出P为像素在第K个间隔处,深度值位于K的左边还是右边。 

二、Scene Understanding Modular

场景理解模块,通过多个尺度的空洞卷积将不同尺度特征进行融合。

 

三、结果

本文是18年的方法,但结果完全吊打目前一系列自监督的方法。可见有监督方法还是远远优于自监督方法。

四、一些思考

  • 本文考虑大深度值的容错性,将真实深度回归转换成分类问题然后映射到log空间。目前有论文提到采用预测视差的方式,即取深度的倒数,可以实现小深度值的稠密预测和大深度值的稀疏预测,这样可能更为简单。
  • 而且目前回归问题,例如U-Net结构,也不存在文中所提到的采用FC层进行回归所产生巨大参数量的问题了。
  • 本文采用ASPP module融合多尺度信息,这个现在也演变出很多方法可以融合多尺度信息。如 Deeplab / FPN / U-Net。
  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
支持向量机学习用于有序回归,是一种机器学习方法,用于处理具有有序标签值的分类问题。有序回归问题在许多实际应用中都非常常见,例如对产品评价的情感分析、用户满意度预测等。 支持向量机(Support Vector Machine,SVM)是一种二分类模型,其目标是找到一个超平面,将不同类别的样本分开,并且使得分隔间隔最大。在支持向量机学习中,核心思想是将高维特征空间映射到一个更低维的特征空间,从而将复杂的非线性问题转化为线性可分的问题。 在有序回归任务中,支持向量机学习的目标是通过训练数据集找到一个有序的分类函数,将输入样本映射到有序标签值上。为了解决有序回归问题,可以使用一种称为“比较类别”的方法,即将问题转化为将输入样本与一组比较类别进行比较的问题。 支持向量机学习在有序回归中的应用具有一些优势。首先,支持向量机可以通过引入核函数来处理非线性关系,提高对于复杂数据的建模能力。其次,支持向量机具有良好的推广能力,可以在训练数据集之外进行准确的预测。此外,支持向量机可以通过调整超参数来灵活地适应不同的任务和数据集。 总之,支持向量机学习是一种有效的方法,可以用于解决有序回归问题。它可以通过映射特征空间和引入核函数来处理非线性关系,并且具有良好的推广能力和灵活的参数调整能力。在实际应用中,我们可以基于支持向量机学习方法来开发有效的有序回归模型,提取有序标签值与输入样本之间的关系,实现准确的预测和分类。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值