目录
一、 性能测试
最近使用opengl画点云数据时发现比较卡顿,原因是我使用了QList数据结构,后面改为QVector改善很多,速度提升1倍。
private:
QVector<QVector3D> m_pointVector;
void PointCloud3dWidget::drawGL()
{
drawGrid();
drawCoordinates();
glBegin(GL_POINTS);
foreach (auto vec3d, m_pointVector)
{
glVertex3d(vec3d.x(), vec3d.y(), vec3d.z());
}
glEnd();
}
为了探寻哪种数据结构、哪种遍历方式最快,我对QList与QVector分别用小数据量,中数据量, 大数据量进行了测试,并且使用了for、foreach、auto、迭代器组合了7种遍历方式做了对比,测试结果如下:
测试代码如下:
void QListTest(QList<QVector3D> &pointList)
{
qDebug() << "=======QList<QVector3D>======";
QTime ms;
ms.start();
/* 方式1:foreach , */
foreach (QVector3D vec, pointList)
{
int x = vec.x();
int y = vec.y();
int z = vec.z();
}
qDebug() << "foreach ," << ms.elapsed() << "ms";
/* 方式2:foreach auto , */
ms.restart();
foreach (auto vec, pointList)
{
int x = vec.x();
int y = vec.y();
int z = vec.z();
}
qDebug() << "foreach auto ," << ms.elapsed() << "ms";
/* 方式3:for ; ;*/
ms.restart();
for(int i = 0; i < pointList.size() ; ++i)
{
QVector3D vec = pointList.at(i);
int x = vec.x();
int y = vec.y();
int z = vec.z();
}
qDebug() << "for ;" << ms.elapsed() << "ms";
/* 方式4:for : */
ms.restart();
for(QVector3D vec : pointList)
{
int x = vec.x();
int y = vec.y();
int z = vec.z();
}
qDebug() << "for :" << ms.elapsed() << "ms";
/* 方式5:for auto : */
ms.restart();
for(auto vec : pointList)
{
int x = vec.x();
int y = vec.y();
int z = vec.z();
}
qDebug() << "for auto :" << ms.elapsed() << "ms";
/* 方式6:for iterator */
ms.restart();
QList<QVector3D>::iterator iter;
for (iter = pointList.begin(); iter != pointList.end(); iter++)
{
int x = (*iter).x();
int y = (*iter).y();
int z = (*iter).z();
}
qDebug() << "iterator" << ms.elapsed() << "ms";
/* 方式7:for auto iterator */
ms.restart();
for (auto iter = pointList.begin(); iter != pointList.end(); iter++)
{
int x = (*iter).x();
int y = (*iter).y();
int z = (*iter).z();
}
qDebug() << "iterator auto" << ms.elapsed() << "ms";
}
void QVectorTest(QVector<QVector3D> &pointVector)
{
qDebug() << "=======QVector<QVector3D>======";
QTime ms;
ms.start();
/* 方式1:foreach , */
foreach (QVector3D vec, pointVector)
{
int x = vec.x();
int y = vec.y();
int z = vec.z();
}
qDebug() << "foreach" << ms.elapsed() << "ms";
/* 方式2:foreach auto , */
ms.restart();
foreach (auto vec, pointVector)
{
int x = vec.x();
int y = vec.y();
int z = vec.z();
}
qDebug() << "foreach auto" << ms.elapsed() << "ms";
/* 方式3:for ; ;*/
ms.restart();
for(int i = 0; i < pointVector.size() ; ++i)
{
QVector3D vec = pointVector.at(i);
int x = vec.x();
int y = vec.y();
int z = vec.z();
}
qDebug() << "for ;" << ms.elapsed() << "ms";
/* 方式4:for : */
ms.restart();
for(QVector3D vec : pointVector)
{
int x = vec.x();
int y = vec.y();
int z = vec.z();
}
qDebug() << "for :" << ms.elapsed() << "ms";
/* 方式5:for auto : */
ms.restart();
for(auto vec : pointVector)
{
int x = vec.x();
int y = vec.y();
int z = vec.z();
}
qDebug() << "for auto :" << ms.elapsed() << "ms";
/* 方式6:for iterator*/
ms.restart();
QVector<QVector3D>::iterator iter;
for (iter = pointVector.begin(); iter != pointVector.end(); iter++)
{
int x = (*iter).x();
int y = (*iter).y();
int z = (*iter).z();
}
qDebug() << "iterator" << ms.elapsed() << "ms";
/* 方式7:for auto iterator */
ms.restart();
for (auto iter = pointVector.begin(); iter != pointVector.end(); iter++)
{
int x = (*iter).x();
int y = (*iter).y();
int z = (*iter).z();
}
qDebug() << "iterator auto" << ms.elapsed() << "ms";
}
int main()
{
QList<QVector3D> pointList;
QVector<QVector3D> pointVector;
for(int i = 0; i < 300; ++i)
{
for(int j = 0; j < 300; ++j)
{
pointList.append(QVector3D(i, j, i + j));
pointVector.append(QVector3D(i, j, i + j));
}
}
QListTest(pointList);
QVectorTest(pointVector);
return 0;
}
二、 QList与QVector耗时对比分析
大数据量3000*12000个,蓝色线为QList耗时,橙色线为QVector耗时,QList耗时更久
中数据量3000*3000个,蓝色线为QList耗时,橙色线为QVector耗时,QList耗时更久
小数据量300*300个,蓝色线为QList耗时,橙色线为QVector耗时,QList耗时更久
结论1:从图中可以发现,QList的不同数据量遍历都比较慢,耗时超QVector一倍。
三、QList遍历方式对比分析
蓝色线为大数据量曲线,橙色为中数据量曲线,灰色为小数据量
结论2:从图中可以发现,QList小数据量时7种遍历时间差不多,但是大数据量时迭代器遍历方式耗时最久,for(:)最快。
四、QVector遍历方式对比分析
蓝色线为大数据量曲线,橙色为中数据量曲线,灰色为小数据量
结论3:从图中可以发现,QVector小数据量时7种遍历时间差不多,但是大数量时迭代器遍历方式耗时最久,for(auto :)最快。与QList结论基本一致。