微积分-01-函数

  • 函数是微积分的研究对象,函数由1、定义域 2、映射法则 组成

一、有界函数

1、定义

  • 有界函数的定义
    设   y = f ( x ) , x ∈ D ( D 表 示 定 义 域 , R 表 示 值 域 ) 若   ∃ N 、 M ,   且   N ≤ M ( N 、 M 为 常 数 ) 对   ∀ x ∈ D ,   都 有   N ≤ f ( x ) ≤ M 则 称 f ( x ) 为 D 上 的 有 界 函 数 \begin{aligned} & 设\ y = f(x), x \in D\quad (D表示定义域,R表示值域) \\ & 若\ \exist N、M,\ 且\ N\leq M\quad (N、M为常数)\\ & 对\ \forall x \in D,\ 都有\ N \leq f(x) \leq M \\ & 则称f(x)为D上的有界函数 \end{aligned}  y=f(x),xD(DR) NM,  NMNM xD,  Nf(x)Mf(x)D

  • 上述定义中
    { N :   下 确 界 , 即 最 大 的 下 界 M :   上 确 界 , 即 最 小 的 上 界 \left\{ \begin{array}{rcl} N:\ 下确界,即最大的下界 \\ M:\ 上确界,即最小的上界 \end{array} \right. {N: M: 

  • 有界和无界的另一种定义(更常用)
    设   y = f ( x ) , x ∈ D 若   ∃ M > 0 ,   对 于   ∀ x ∈ D ,   都 有   ∣ f ( x ) ∣ ≤ M ,   则 称 f ( x ) 有 界 若   ∀ M > 0 ,   都   ∃ x M ∈ D ,   使 得   ∣ f ( x ) ∣ > M ,   则 称 f ( x ) 无 界 \begin{aligned} & 设\ y = f(x), x \in D \\ & 若\ \exist M>0,\ 对于\ \forall x \in D,\ 都有\ |f(x)|\leq M,\ 则称f(x)有界 \\ & 若\ \forall M>0,\ 都\ \exist x_M \in D,\ 使得\ |f(x)|>M,\ 则称f(x)无界 \end{aligned}  y=f(x),xD M>0,  xD,  f(x)M, f(x) M>0,  xMD, 使 f(x)>M, f(x)

2、例题

  • 例题1
    证 明 f ( x ) = 1 x 在 [ 0 , 1 ] 上 为 无 界 函 数 证明\quad f(x) = \frac{1}{\sqrt{x}}\quad在\quad [0,1]\quad 上为无界函数 f(x)=x 1[0,1]

    • 解答过程
      证 : 从 定 义 出 发 证 明 , 使 用 分 析 法 f ( x ) 为 无 界 函 数 ⇔ ∀ M > 0 ,   ∃ x ∈ [ 0 , 1 ] ,   使 得 ∣ f ( x ) ∣ = 1 x > M ⇔ ∀ M > 0 ,   ∃ x ∈ [ 0 , 1 ] ,   使 得 x > M 2 所 以 可 取   x 0 = 1 ( M + 1 ) 2 ,   x 0 ∈ [ 0 , 1 ] ,   且 对 于 任 意 M > 0 , 均 有   ∣ f ( x 0 ) ∣ > M \begin{aligned} & 证:从定义出发证明,使用分析法 \\ & \quad f(x)为无界函数 \\ & \Leftrightarrow \forall M>0,\ \exist x \in [0,1],\ 使得|f(x)| = \frac{1}{\sqrt{x}} >M \\ & \Leftrightarrow \forall M>0,\ \exist x \in [0,1],\ 使得x > M^2 \\ & \quad 所以可取\ x_0=\frac{1}{(M+1)^2},\ x_0 \in [0,1],\ 且对于任意M>0,均有\ |f(x_0)|>M \end{aligned} 使f(x)M>0, x[0,1], 使f(x)=x 1>MM>0, x[0,1], 使x>M2 x0=(M+1)21, x0[0,1], M>0 f(x0)>M

二、复合函数

  • 复合函数的定义
    设   y = f ( u ) , u ∈ D ( f ) ; u = φ ( x ) , u ∈ R ( φ ) ( D ( f ) 表 示 f 的 定 义 域 , R ( φ ) 表 示 φ 的 值 域 ) 且   D ( f ) ⋂ R ( φ ) ≠ ϕ ( ϕ 为 空 集 ) 则 称   y = f ( φ ( x ) )   为 x 的 复 合 函 数 \begin{aligned} & 设\ y = f(u), u\in D(f); u = \varphi (x), u\in R(\varphi) \quad (D(f)表示f的定义域,R(\varphi)表示\varphi的值域)\\ & 且\ D(f) \bigcap R(\varphi) \neq \phi \quad(\phi 为空集) \\ & 则称\ y = f(\varphi(x))\ 为x的复合函数 \end{aligned}  y=f(u),uD(f);u=φ(x),uR(φ)D(f)fR(φ)φ D(f)R(φ)=ϕϕ y=f(φ(x)) x

  • 其中
    { x : 自 变 量 y : 因 变 量 u : 中 间 变 量 f ( u ) : 外 层 函 数 φ ( x ) : 内 层 函 数 \left\{ \begin{array}{rcl} && x: 自变量\quad y: 因变量\quad u:中间变量 \\ && f(u): 外层函数\quad \varphi(x): 内层函数 \end{array} \right. {x:y:u:f(u):φ(x):

三、反函数

1、定义

  • 反函数的定义
    设   y = f ( x ) , x ∈ D ( f ) 若 对 于   ∀ x 1 , x 2 ∈ D ,   且   x 1 ≠ x 2 ,   都 有 f ( x 1 ) ≠ f ( x 2 ) ,   则 称   y = f ( x )   为 一 一 对 应 的 函 数 这 样 ,   ∀ y ∈ R ( f ) ,   都 存 在 唯 一 的   x ∈ D   ( 且 f ( x ) = y )   与 之 对 应 则 得 到 一 个 定 义 在 R ( f ) 上 的 函 数 , 该 函 数 的 定 义 域 是   R ( f ) ,   值 域 是   D ( f ) 记 作   x = f − 1 ( y ) ,   称 为   y = f ( x ) , x ∈ D   的 反 函 数 \begin{aligned} & 设\ y = f(x), x \in D(f) \\ & 若对于\ \forall x_1, x_2 \in D,\ 且\ x_1 \neq x_2,\ 都有f(x_1) \neq f(x_2),\ 则称\ y=f(x)\ 为一一对应的函数 \\ & 这样,\ \forall y \in R(f),\ 都存在唯一的\ x \in D\ (且f(x) = y)\ 与之对应 \\ & 则得到一个定义在R(f)上的函数,该函数的定义域是\ R(f),\ 值域是\ D(f) \\ & 记作\ x = f^{-1}(y),\ 称为\ y = f(x),x \in D\ 的反函数 \end{aligned}  y=f(x),xD(f) x1,x2D,  x1=x2, f(x1)=f(x2),  y=f(x) , yR(f),  xD f(x)=y R(f) R(f),  D(f) x=f1(y),  y=f(x),xD 

2、反函数的性质

  • 函数的值域是反函数的定义域
  • 函数的定义域是反函数的值域
  • y = f ( x ) y=f(x) y=f(x) x = f − 1 ( y ) x=f^{-1}(y) x=f1(y) 的图像是相同的(实际上就是同一条曲线,只是把横轴和纵轴互换了)
  • y = f ( x ) y=f(x) y=f(x) y = f − 1 ( x ) y=f^{-1}(x) y=f1(x) 的图像是关于直线 y = x y=x y=x 对称的
  • y = f ( x ) y=f(x) y=f(x),存在 x = f − 1 ( y ) x=f^{-1}(y) x=f1(y),则 f ( f − 1 ( y ) ) = y ,   f − 1 ( f ( x ) ) = x f(f^{-1}(y))=y,\ f^{-1}(f(x))=x f(f1(y))=y, f1(f(x))=x

四、单调函数

1、定义

  • 单调函数的定义
    设   y = f ( x ) , x ∈ D 若   ∀ x 1 , x 2 ∈ D ,   且   x 1 ≤ x 2 ,   都 有   f ( x 1 ) ≤ f ( x 2 )   ( f ( x 1 ) ≥ f ( x 2 ) ) 则 称   y = f ( x )   是   D   上 的 递 增 函 数 ( 递 减 函 数 ) 若 去 掉 等 号 , 则 为 严 格 递 增 函 数 ( 严 格 递 减 函 数 ) \begin{aligned} & 设\ y=f(x), x \in D \\ & 若\ \forall x_1, x_2 \in D,\ 且\ x_1 \leq x_2,\ 都有\ f(x_1) \leq f(x_2)\ (f(x_1) \geq f(x_2))\\ & 则称\ y=f(x)\ 是\ D\ 上的递增函数(递减函数)\\ & 若去掉等号,则为严格递增函数(严格递减函数) \end{aligned}  y=f(x),xD x1,x2D,  x1x2,  f(x1)f(x2) f(x1)f(x2) y=f(x)  D 

  • 其中
    { 递 增 / 递 减 函 数 统 称 为 单 调 函 数 严 格 递 增 / 递 减 函 数 统 称 为 严 格 单 调 函 数 \left\{ \begin{array}{rcl} && 递增/递减函数统称为单调函数 \\ && 严格递增/递减函数统称为严格单调函数 \end{array} \right. {//

2、严格单调函数的作用(定理)

  • 严格单调函数的一个重要作用就是判断一个函数是否有反函数,因为要系统证明反函数存在,需要证明该函数是一一对应的,这样很麻烦,所以可以借助下面的定理来判断一个函数是否有反函数

  • 定理
    若   y = f ( x )   为 严 格 单 调 函 数 , 则 必 有 反 函 数   x = f − 1 ( y ) , 且 反 函 数 也 是 严 格 单 调 函 数 若\ y=f(x)\ 为严格单调函数,则必有反函数\ x=f^{-1}(y),且反函数也是严格单调函数  y=f(x)  x=f1(y)

五、基本初等函数(6类)

1、常值函数

  • 常值函数
    y = C ( C 为 常 数 ) ,   x ∈ R y = C(C为常数),\ x \in R y=CC, xR

2、幂函数

  • 幂函数
    y = x α ( α 为 常 数 , 且   α ≠ 0 ) ,   x ∈ D y = x^\alpha (\alpha为常数,且\ \alpha \neq 0),\ x \in D y=xαα α=0, xD

3、指数函数

  • 指数函数
    y = a x ( a > 0 ,   且 a ≠ 1 ) ,   x ∈ R y = a^x(a > 0,\ 且a \neq 1),\ x \in R y=axa>0, a=1, xR

4、对数函数

  • 对数函数
    y = l o g a ( x ) ( a > 0 ,   且   a ≠ 1 ) ,   x > 0 y = log_a(x)(a>0,\ 且\ a \neq 1),\ x>0 y=loga(x)a>0,  a=1, x>0

  • y = a x y=a^x y=ax y = l o g a ( x ) y=log_a(x) y=loga(x) 互为反函数

5、三角函数

(1)定义

  • 正弦函数: y = s i n x , x ∈ R y = sinx, \quad x \in R y=sinx,xR
  • 余弦函数: y = c o s x , x ∈ R y = cosx, \quad x \in R y=cosx,xR
  • 正切函数: y = t a n x , x ≠ ( k + 0.5 ) π y = tanx, \quad x \neq (k+0.5)\pi y=tanx,x=(k+0.5)π
  • 余割函数: y = c s c x = s i n − 1 x , x ≠ k π y = cscx = sin^{-1}x, \quad x \neq k\pi y=cscx=sin1x,x=kπ
  • 正割函数: y = s e c x = c o s − 1 x , x ≠ ( k + 0.5 ) π y = secx = cos^{-1}x, \quad x \neq (k+0.5)\pi y=secx=cos1x,x=(k+0.5)π
  • 余切函数: y = c o t x = t a n − 1 x , x ≠ k π y = cotx = tan^{-1}x, \quad x \neq k\pi y=cotx=tan1x,x=kπ

(2)重要公式

<1> 三角恒等式

1. s i n 2 x + c o s 2 x = 1 2. s e c 2 x = s i n 2 x + c o s 2 x c o s 2 x = t a n 2 x + 1 3. 同 理 可 得 c s c 2 x = c o t 2 x + 1 \begin{aligned} & 1. \quad sin^2x + cos^2x = 1 \\ & 2. \quad sec^2x = \frac{sin^2x + cos^2x}{cos^2x} = tan^2x + 1 \\ & 3. \quad 同理可得 \quad csc^2x = cot^2x + 1 \\ \end{aligned} 1.sin2x+cos2x=12.sec2x=cos2xsin2x+cos2x=tan2x+13.csc2x=cot2x+1

<2> 导数公式(推导略,后面会讲)

1. s i n ′ x = c o s x 2. c o s ′ x = − s i n x 3. t a n ′ x = s e c 2 x = 1 + t a n 2 x 4. s e c ′ x = s e c x t a n x 5. c s c ′ x = − c s c x c o t x 6. c o t ′ x = − c s c 2 x = − ( 1 + c o t 2 x ) \begin{aligned} & 1. \quad sin'x = cosx \\ & 2. \quad cos'x = -sinx \\ & 3. \quad tan'x = sec^2x = 1 + tan^2x \\ & 4. \quad sec'x = secxtanx \\ & 5. \quad csc'x = -cscxcotx \\ & 6. \quad cot'x = -csc^2x = -(1 + cot^2x) \end{aligned} 1.sinx=cosx2.cosx=sinx3.tanx=sec2x=1+tan2x4.secx=secxtanx5.cscx=cscxcotx6.cotx=csc2x=(1+cot2x)

<3> 两角和公式

1. s i n ( x ± y ) = s i n x c o s y ± s i n y c o s x 2. c o s ( x ± y ) = c o s x c o s y ∓ s i n x s i n y \begin{aligned} & 1. \quad sin(x \pm y) = sinxcosy \pm sinycosx \\ & 2. \quad cos(x \pm y) = cosxcosy \mp sinxsiny \end{aligned} 1.sin(x±y)=sinxcosy±sinycosx2.cos(x±y)=cosxcosysinxsiny

<4> 倍角公式(由两角和公式可推得)

1. s i n ( 2 x ) = 2 s i n x c o s x 2. c o s ( 2 x ) = c o s 2 x − s i n 2 x = 2 c o s 2 x − 1 = 1 − 2 s i n 2 x 3. t a n ( 2 x ) = 2 s i n x c o s x c o s 2 x − s i n 2 x = 2 t a n x 1 − t a n 2 x \begin{aligned} & 1. \quad sin(2x) = 2sinxcosx \\ & 2. \quad cos(2x) = cos^2x - sin^2x = 2cos^2x - 1 = 1 - 2sin^2x \\ & 3. \quad tan(2x) = \frac{2sinxcosx}{cos^2x - sin^2x} = \frac{2tanx}{1 - tan^2x} \\ \end{aligned} 1.sin(2x)=2sinxcosx2.cos(2x)=cos2xsin2x=2cos2x1=12sin2x3.tan(2x)=cos2xsin2x2sinxcosx=1tan2x2tanx

<5> 半角公式/降幂公式(由倍角公式可推得)

1. s i n 2 x = 1 − 2 c o s ( 2 x ) 2 2. c o s 2 x = 2 c o s ( 2 x ) + 1 2 \begin{aligned} & 1. \quad sin^2x = \frac{1 - 2cos(2x)}{2} \\ & 2. \quad cos^2x = \frac{2cos(2x) + 1}{2} \end{aligned} 1.sin2x=212cos(2x)2.cos2x=22cos(2x)+1

<6> 万能公式(由半角公式及三角恒等式可推得)
  • 为什么叫万能公式:在求三角函数有理式的不定积分时会用到

1. s i n x = 2 s i n x 2 c o s x 2 = 2 t a n x 2 s e c 2 x 2 = 2 t a n x 2 1 + t a n 2 x 2 2. c o s x = c o s 2 x 2 − s i n 2 x 2 = 1 − t a n 2 x 2 s e c 2 x 2 = 1 − t a n x 2 1 + t a n 2 x 2 3. t a n x = 2 t a n x 2 1 − t a n 2 x 2 \begin{aligned} & 1. \quad sinx = 2sin\frac{x}{2}cos\frac{x}{2} = \frac{2tan\frac{x}{2}}{sec^2\frac{x}{2}} = \frac{2tan\frac{x}{2}}{1 + tan^2\frac{x}{2}} \\ & 2. \quad cosx = cos^2\frac{x}{2} - sin^2\frac{x}{2} = \frac{1 - tan^2\frac{x}{2}}{sec^2\frac{x}{2}} = \frac{1 - tan\frac{x}{2}}{1 + tan^2\frac{x}{2}} \\ & 3. \quad tanx = \frac{2tan\frac{x}{2}}{1 - tan^2\frac{x}{2}} \end{aligned} 1.sinx=2sin2xcos2x=sec22x2tan2x=1+tan22x2tan2x2.cosx=cos22xsin22x=sec22x1tan22x=1+tan22x1tan2x3.tanx=1tan22x2tan2x

<7> 积化和差公式(由两角和公式可推得)

s i n x c o s y = 1 2 [ ( s i n x c o s y + s i n y c o s x ) + ( s i n x c o s y − s i n y c o s x ) ] = s i n ( x + y ) + s i n ( x − y ) 2 s i n y c o s x = s i n ( x + y ) − s i n ( x − y ) 2 ( 上 一 个 式 子 x 和 y 互 换 即 可 ) c o s x c o s y = 1 2 [ ( c o s x c o s y − s i n x s i n y ) + ( c s o x c o s y + s i n x s i n y ) ] = c o s ( x + y ) + c o s ( x − y ) 2 \begin{aligned} sinxcosy & = \frac{1}{2} [(sinxcosy + sinycosx) + (sinxcosy - sinycosx)] \\ & = \frac{sin(x + y) + sin(x - y)}{2} \\ sinycosx & = \frac{sin(x + y) - sin(x - y)}{2} \quad (上一个式子x和y互换即可)\\ cosxcosy & = \frac{1}{2} [(cosxcosy - sinxsiny) + (csoxcosy + sinxsiny)] \\ & = \frac{cos(x + y) + cos(x - y)}{2} \\ \end{aligned} sinxcosysinycosxcosxcosy=21[(sinxcosy+sinycosx)+(sinxcosysinycosx)]=2sin(x+y)+sin(xy)=2sin(x+y)sin(xy)(xy)=21[(cosxcosysinxsiny)+(csoxcosy+sinxsiny)]=2cos(x+y)+cos(xy)

<8> 和差化积公式(积化和差的逆运算)

s i n x + s i n y = 2 s i n ( x + y 2 + x − y 2 ) + s i n ( x + y 2 − x − y 2 ) 2 = 2 s i n x + y 2 c o s x − y 2 s i n x − s i n y = 2 c o s x + y 2 s i n x − y 2 c o s x + c o s y = 2 c o s ( x + y 2 + x − y 2 ) + c o s ( x + y 2 − x − y 2 ) 2 = 2 c o s x + y 2 c o s x − y 2 c o s x − c o s y = − 2 s i n x + y 2 s i n x − y 2 \begin{aligned} sinx + siny & = 2 \frac{sin(\frac{x + y}{2} + \frac{x - y}{2}) + sin(\frac{x + y}{2} - \frac{x - y}{2})}{2} \\ & = 2sin\frac{x + y}{2}cos\frac{x - y}{2} \\ sinx - siny & = 2cos\frac{x + y}{2}sin\frac{x - y}{2} \\ cosx + cosy & = 2 \frac{cos(\frac{x + y}{2} + \frac{x - y}{2}) + cos(\frac{x + y}{2} - \frac{x - y}{2})}{2} \\ & = 2cos\frac{x + y}{2}cos\frac{x - y}{2} \\ cosx - cosy & = -2sin\frac{x + y}{2}sin\frac{x - y}{2} \end{aligned} sinx+sinysinxsinycosx+cosycosxcosy=22sin(2x+y+2xy)+sin(2x+y2xy)=2sin2x+ycos2xy=2cos2x+ysin2xy=22cos(2x+y+2xy)+cos(2x+y2xy)=2cos2x+ycos2xy=2sin2x+ysin2xy

6、反三角函数

(1)定义

  • y = s i n x y = sinx y=sinx 的反函数
    • y = s i n x , x ∈ [ − 0.5 π , 0.5 π ] y = sinx \quad , x \in [-0.5\pi, 0.5\pi] y=sinx,x[0.5π,0.5π] 为严格单调递增函数,因此有反函数,记作 y = a r c s i n x y = arcsinx y=arcsinx
    • 由反函数性质可得 x ∈ [ − 1 , 1 ] , y ∈ [ − 0.5 π , 0.5 π ] x \in [-1, 1] \quad , \quad y \in [-0.5\pi, 0.5\pi] x[1,1],y[0.5π,0.5π]
  • 同理 y = c o s x y = t a n x y = cosx \quad y = tanx y=cosxy=tanx 等三角函数在特定定义域内均有反函数,分别为
    • y = a r c c o s x , x ∈ [ − 1 , 1 ] , y ∈ [ 0 , π ] y = arccosx \quad, x \in [-1, 1] \quad, y \in [0, \pi] y=arccosx,x[1,1],y[0,π]
    • y = a r c t a n x , x ∈ R , y ∈ [ − 0.5 π , 0.5 π ] y = arctanx \quad, x \in R \quad,y \in [-0.5\pi, 0.5\pi] y=arctanx,xR,y[0.5π,0.5π]

(2)重要公式

<1> 恒等式

1. a r c s i n x + a r c c o s x = 0.5 π 2. a r c t a n x + a r c c o t x = 0.5 π 3. s i n ( a r c c o s x ) = c o s ( a r c s i n x ) = 1 − x 2 4. t a n ( a r c c o t x ) = c o t ( a r c t a n x ) = 1 x \begin{aligned} & 1. \quad arcsinx + arccosx = 0.5\pi \\ & 2. \quad arctanx + arccotx = 0.5\pi \\ & 3. \quad sin(arccosx) = cos(arcsinx) = \sqrt{1 - x^2} \\ & 4. \quad tan(arccotx) = cot(arctanx) = \frac{1}{x} \end{aligned} 1.arcsinx+arccosx=0.5π2.arctanx+arccotx=0.5π3.sin(arccosx)=cos(arcsinx)=1x2 4.tan(arccotx)=cot(arctanx)=x1

<2> 导数公式

1. a r c s i n ′ x = 1 1 − x 2 2. a r c c o s ′ x = − 1 1 − x 2 3. a r c t a n ′ x = 1 1 + x 2 4. a r c c o t ′ x = − 1 1 + x 2 \begin{aligned} & 1. \quad arcsin'x = \frac{1}{\sqrt{1 - x^2}} \\ & 2. \quad arccos'x = -\frac{1}{\sqrt{1 - x^2}} \\ & 3. \quad arctan'x = \frac{1}{1 + x^2} \\ & 4. \quad arccot'x = -\frac{1}{1 + x^2} \end{aligned} 1.arcsinx=1x2 12.arccosx=1x2 13.arctanx=1+x214.arccotx=1+x21

六、初等函数

  • 初等函数的定义
    • 由六种基本初等函数经过有限次的四则运算或者复合元算所得到的函数称为初等函数
  • 简单函数的定义
    • 由六种基本初等函数经过有限次的四则运算所得到的函数称为简单函数

七、非初等函数

  • 非初等函数的定义

    • 不是初等函数的函数就是非初等函数
  • 例如分段函数一般是非初等函数,但是也有例外,如下
    f ( x ) = { − x , x < 0 x , x ≥ 0 f(x) = \left\{ \begin{array}{rcl} -x \quad , \quad x < 0 \\ x \quad , \quad x \ge 0 \end{array} \right. f(x)={x,x<0x,x0

    • 实际上 f ( x ) = ∣ x ∣ = x f(x) = |x| = \sqrt{x} f(x)=x=x ,所以为初等函数
  • 判别方法(一般而言):只有一个解析式的函数为初等函数

八、几个重要的函数

1、符号函数

y = f ( x ) = s i g n ( x ) = { − 1 , x < 0 0 , x = 0 1 , x > 0 y = f(x) = sign(x) = \left\{ \begin{array}{rcl} -1 \quad , \quad x < 0 \\ 0 \quad, \quad x = 0 \\ 1 \quad , \quad x > 0 \end{array} \right. y=f(x)=sign(x)=1,x<00,x=01,x>0

2、取整函数

  • 记[x]表示不超过x端最大整数
  • [x]的一个性质: [ x ] ≤ x < [ x ] + 1 [x] \le x < [x]+1 [x]x<[x]+1

3、狄利克雷函数

y = f ( x ) = D ( x ) = { 1 , x 为 有 理 数 0 , x 为 无 理 数 y = f(x) = D(x) = \left\{ \begin{array}{rcl} 1 \quad , \quad x为有理数 \\ 0 \quad , \quad x为无理数 \end{array} \right. y=f(x)=D(x)={1,x0,x

  • 重要性质:狄利克雷函数是周期函数

4、幂指函数

  • y = f ( x ) = u ( x ) v ( x ) ( u ( x ) > 0 ) y = f(x) = u(x)^{v(x)} \quad (u(x) > 0) y=f(x)=u(x)v(x)(u(x)>0)
  • 可化为: y = f ( x ) = e v ( x ) l n [ u ( x ) ] y = f(x) = e^{v(x)ln[u(x)]} y=f(x)=ev(x)ln[u(x)]
  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值