【计算题】(五)多元函数微积分学

多元微分

1. 极限偏导可微

证明二重极限: x = r c o s θ , y = r s i n θ x=rcos \theta,y=rsin \theta x=rcosθy=rsinθ

  • I = lim ⁡ ( x , y ) → ( 0 , 0 ) x y 2 x 2 + y 4 I=\lim_{(x,y) \to (0,0)}\frac{xy^2}{x^2+y^4} I=lim(x,y)(0,0)x2+y4xy2
    解:令 x = r c o s θ , y 2 = r s i n θ , θ ∈ ( 0 , π ) x=rcos \theta,y^{2}=rsin \theta,\theta \in (0, \pi) x=rcosθy2=rsinθθ(0,π) I = lim ⁡ r → 0 + r 2 c o s θ s i n θ r 2 = c o s θ s i n θ I = \lim_{r \to 0^{+}}\frac{r^{2}cos \theta sin \theta}{r^{2}} = cos\theta sin\theta I=r0+limr2r2cosθsinθ=cosθsinθ 因为 θ \theta θ 可取 ( 0 , π ) (0, \pi) (0,π) 内任意值(代表任意趋近路径),极限值不一致,所以极限不存在

  • I = lim ⁡ ( x , y ) → ( 0 , 1 ) ln ⁡ ( 1 + x y ) x I=\lim_{(x,y) \to (0,1)}\frac{\ln (1+xy)}{x} I=lim(x,y)(0,1)xln(1+xy)
    解:令 x = r c o s θ , y = r s i n θ + 1 x=rcos \theta,y=rsin \theta + 1 x=rcosθy=rsinθ+1 I = lim ⁡ r → 0 + ln ⁡ [ 1 + r c o s θ ( 1 + r s i n θ ) ] r c o s θ = lim ⁡ r → 0 + r c o s θ ( 1 + r s i n θ ) r c o s θ = 1 I = \lim_{r \to 0^{+} } \frac{\ln [1+rcos\theta(1+rsin\theta)] }{rcos\theta} =\lim_{r \to 0^{+} } \frac{rcos\theta(1+rsin\theta) }{rcos\theta} =1 I=r0+limrcosθln[1+rcosθ(1+rsinθ)]=r0+limrcosθrcosθ(1+rsinθ)=1

连续: lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = f ( x 0 , y 0 ) \lim_{(x,y) \to (x_0,y_0)}f(x,y)=f(x_0,y_0) lim(x,y)(x0,y0)f(x,y)=f(x0,y0)
偏导:定义法求 f x ′ ( x 0 , y 0 ) , f y ′ ( x 0 , y 0 ) f_{x}^{'}(x_0,y_0),f_{y}^{'}(x_0,y_0) fx(x0,y0)fy(x0,y0)
偏导连续:

  • 定义法求 f x ′ ( x 0 , y 0 ) , f y ′ ( x 0 , y 0 ) f_{x}^{'}(x_0,y_0),f_{y}^{'}(x_0,y_0) fx(x0,y0)fy(x0,y0)
  • 公式法求 f x ′ ( x , y ) , f y ′ ( x , y ) f_{x}^{'}(x,y),f_{y}^{'}(x,y) fx(x,y)fy(x,y)
  • 计算 lim ⁡ ( x , y ) → ( x 0 , y 0 ) f x ′ ( x , y ) = f x ′ ( x 0 , y 0 ) , lim ⁡ ( x , y ) → ( x 0 , y 0 ) f y ′ ( x , y ) = f y ′ ( x 0 , y 0 ) \lim_{(x,y) \to (x_0,y_0)}f_{x}^{'}(x,y)=f_{x}^{'}(x_0,y_0), \lim_{(x,y) \to (x_0,y_0)}f_{y}^{'}(x,y)=f_{y}^{'}(x_0,y_0) lim(x,y)(x0,y0)fx(x,y)=fx(x0,y0)lim(x,y)(x0,y0)fy(x,y)=fy(x0,y0)

可微:

  • 全增量 Δ z = f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) \Delta z=f(x_0+\Delta x, y_0+\Delta y)-f(x_0,y_0) Δz=f(x0+Δx,y0+Δy)f(x0,y0)
  • 线性增量 A Δ x + B Δ y A\Delta x + B\Delta y AΔx+BΔy,其中 A = f x ′ ( x 0 , y 0 ) A=f_{x}^{'}(x_0,y_0) A=fx(x0,y0) B = f y ′ ( x 0 , y 0 ) B=f_{y}^{'}(x_0,y_0) B=fy(x0,y0)
  • 计算 lim ⁡ ( Δ x , Δ y ) → ( 0 , 0 ) f x ′ ( x , y ) = Δ z − A Δ x + B Δ y ( Δ x ) 2 + ( Δ y ) 2 = 0 \lim_{(\Delta x,\Delta y) \to (0,0)}f_{x}^{'}(x,y) =\frac{\Delta z - A\Delta x + B\Delta y}{\sqrt{(\Delta x)^2+(\Delta y)^2} }=0 lim(Δx,Δy)(0,0)fx(x,y)=(Δx)2+(Δy)2 ΔzAΔx+BΔy=0

z = f ( x , y ) = { ( x 2 + y 2 ) sin ⁡ 1 x 2 + y 2 x 2 + y 2 = 0 0 x 2 + y 2 ≠ 0 z=f(x,y) = \begin{cases} (x^{2}+y^{2})\sin \frac{1}{\sqrt{x^2+y^2} } & &{ x^{2}+y^{2}=0 } \\ 0& & { x^{2}+y^{2}≠0 } \end{cases} z=f(x,y)={ (x2+y2)sinx2+y2 10x2+y2=0x2+y2=0, 则下列四个结论中, ( 1 ) f ( x , y ) 在 ( 0 , 0 ) 处 连 续 ; ( 2 ) f x ′ ( 0 , 0 ) , f y ′ ( 0 , 0 ) 存 在 ( 3 ) f x ′ ( x , y ) , f y ′ ( x , y ) 在 ( 0 , 0 ) 处 连 续 ( 4 ) f ( x , y ) 在 ( 0 , 0 ) 处 可 微 (1) f(x,y)在(0,0) 处连续;\qquad \qquad (2) f_{x}^{'}(0,0), f_{y}^{'}(0,0) 存在 \\ (3) f_{x}^{'}(x,y), f_{y}^{'}(x,y) 在(0,0)处连续 \qquad \quad (4) f(x,y) 在(0,0)处可微 (1)f(x,y)(0,0)(2)fx(0,0),fy(0,0)(3)fx(x,y),fy(x,y)(0,0)(4)f(x,y)(0,0)

解:

  • lim ⁡ ( x , y ) → ( 0 , 0 ) f ( x , y ) = lim ⁡ ( x , y ) → ( 0 , 0 ) ( x 2 + y 2 ) sin ⁡ 1 x 2 + y 2 = lim ⁡ r → 0 + r 2 sin ⁡ 1 r = 0 , f ( 0 , 0 ) = 0 , 结 论 ( 1 ) 正 确 \lim_{(x,y) \to (0,0)}f(x,y)=\lim_{(x,y) \to (0,0)}(x^{2}+y^{2})\sin \frac{1}{\sqrt{x^2+y^2}} =\lim_{r \to 0^{+} }r^{2} \sin \frac{1}{r} =0,f(0,0)=0,结论(1)正确 (x,y)(0,0)limf(x,y)=(x,y)(0,0)lim(x2+y2)sinx2+y2 1=r0+lim
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值