simple-HGN 介绍 - 一种简单有效的异构图建模方法

本文介绍了KDD2021会议上提出的Simple-HGN模型,该模型针对异构图建模进行优化。Simple-HGN基于GAT,通过引入可学习的边类型嵌入、残差连接和L2归一化的输出嵌入,解决了GAT在处理异构图时的不足。边类型嵌入将边信息纳入注意力计算,节点和边的残差连接有助于克服深度学习中的梯度消失和过度平滑问题,而L2归一化则提升了模型在分类和检索任务上的性能。
摘要由CSDN通过智能技术生成

参考论文:http://keg.cs.tsinghua.edu.cn/jietang/publications/KDD21-Lv-et-al-HeterGNN.pdf

KDD 2021论文

这里只是把作者提出的这个模型拿出来介绍了!!!

目录

1 可学习的边类型嵌入

2 残差连接

3  L2 归一化


受简单 GAT 相对于高级专用异构 GNN 的优势的启发,作者提出了 Simple-HGN,这是一种简单有效的异构图建模方法。

        Simple-HGN 采用 GAT 作为主干,对三种众所周知的技术进行了重新设计:可学习的边类型嵌入、残差连接和输出嵌入的 L2 归一化。图 1 说明了使用 Simple-HGN 的完整pipeline;紫色部分是 Simple-HGN 中对 GAT 的改进。

 

1 可学习的边类型嵌入

        GAT缺陷:虽然 GAT 在建模同构图方面具有强大的能力,但由于忽略了节点或边的类型,它对于异构图可能不是最优的。

        方法概括:为了解决这个问题,作者通过将边类型信息包含到注意力计算中来扩展原始的图注意力机制

        具体来说:(1)在每一层,作者为每个边类型 \psi (e) \in T_e 分配d_l维嵌入r^{(l)}_{\psi (e)};

                           (2)并使用边类型嵌入节点嵌入来计算注意力分数,如下所示:

                         其中\psi (<i,j>)表示节点和节点之间的边类型,而W^{(l)}_r是转换类型嵌入的可学习矩阵。

2 残差连接

        前人研究:由于过度平滑和梯度消失问题,GNN 很难深入表示 [23, 38]。在计算机视觉中缓解这个问题的一个著名解决方案是残差连接[15]。然而,原始的 GCN 论文 [21] 在图卷积上显示了残差连接的否定结果。

        最近的研究 [22] 发现,精心设计的预激活实现可以使 GNN 中的残差连接再次变得更好。

        节点残差:作者为跨层的节点表示添加了预激活残差连接。 l^{th} 层的聚合可以表示为:

                        其中a_{ij}^{(l)}是关于边<i,j>的注意力权重,\sigma是一个激活函数(默认为 ELU)。当第l 层的维度发生变化时,需要额外的增加一个可学习线性变换W^{(l)}_{res},即 

         边残差: 最近,Realformer 揭示了注意力分数的残差连接也很有帮助。在通过等式(7)获得原始注意力分数之后,作者向它们添加残差连接:

                 其中超参数 \beta \in [0,1]是缩放因子;

        多头注意力:与 GAT 类似,作者采用多头注意力来增强模型的表达能力。具体来说,作者根据等式(8)执行独立的注意力机制,并将它们的结果连接起来作为最终表示。对应的更新规则为:

                         其中||表示连接操作,\widehat{a}^{(l)}_{ijk}是根据等式(9)通过W^l_k线性变换计算的注意力分数。

                        通常输出维度不能完全除以头数。

                        在 GAT 之后,作者不再使用连接,而是对最终 L层中的表示采用平均,即

        适应链接预测:者稍微修改了模型架构,以获得更好的链接预测性能。 边缘残差被移除,最终嵌入是所有层的嵌入的连接。这个改编版本类似于 JKNet[38]。

3  L2 归一化

        作者发现输出嵌入的 L2 归一化非常有用,即

         其中o_i是节点的输出嵌入, h^{(L)}_i是等式 (14) 的最终表示;

        输出嵌入的归一化对于基于检索的任务来说非常常见,因为归一化后的点积将等同于余弦相似度。

        优点:但作者也发现它对分类任务的改进,这在计算机视觉中也得到了观察 [26]。此外,它建议将缩放参数乘以输出嵌入[26]。作者现调整适当的值确实可以提高性能,但在不同的数据集中差异很大。因此为简单起见,保持方程式 (15) 的形式为简单起见。

为了设计一个满足特定频率和带宽要求的微带天线,我们需要借助专业电磁仿真软件HFSS。以下是一个详细的步骤指南,用于设计一个在2.5GHz具有大于5%带宽和回波损耗小于-10dB的微带天线。 参考资源链接:[使用HFSS设计2.5GHz微带天线](https://wenku.csdn.net/doc/3h2hgn9k3g) 首先,选择合适的微带天线类型和馈电方式。由于本设计要求使用同轴线馈电,因此我们将构建一个具有同轴馈电的矩形微带贴片天线。在HFSS中,我们首先创建微带天线的三维模型,并为其定义介质层和参考地。介质层的相对介电常数和损耗角正切需要根据实际使用的材料来设定。 接着,我们需根据工作频率2.5GHz来计算天线的几何结构参数,如辐射贴片的长度L和宽度W。利用给定的公式和波长关系,我们可以确定这些尺寸,并在HFSS中进行相应的设置。接下来,定义工作频率范围,本案例中为2.375GHz至2.625GHz,以满足5%的带宽要求。 在HFSS中,我们运行仿真以获取天线的性能参数,包括S参数、增益和辐射模式等。重点关注回波损耗S11,这是判断天线是否满足设计要求的关键参数。如果S11的值不满足-10dB的条件,我们需要根据仿真结果来调整天线的几何尺寸,例如贴片的长度L和宽度W,以及介质层的厚度等,然后重新运行仿真。 重复上述调整和仿真过程,直至天线的回波损耗S11小于-10dB,并且带宽满足大于5%的要求。一旦天线性能达到设计指标,我们便可以保存设计并输出结果。 为了确保设计的准确性和实用性,你可以参考《使用HFSS设计2.5GHz微带天线》这份资料,其中详细介绍了基于HFSS的微带天线设计流程和方法,包含了设计示例、仿真参数设置以及性能分析等内容。通过深入学习这份资料,你将能更好地掌握使用HFSS软件进行天线设计的技巧,并解决实际设计中可能遇到的问题。 参考资源链接:[使用HFSS设计2.5GHz微带天线](https://wenku.csdn.net/doc/3h2hgn9k3g)
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值