异质图神经网络(HGNN)常用数据集信息统计(持续更新ing...)

本文汇总了多种常用于异质图神经网络研究的数据集,包括它们的任务类型及来源,涵盖了学术网络分析、电影分类等多个应用场景,并提供了数据集的获取途径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

诸神缄默不语-个人CSDN博文目录

最近更新时间:2022.12.25
最早更新时间:2022.9.27

1. 整体介绍

本文统计各论文中常用的异质图数据集信息。
整体表格我做了个石墨文档,但是还没整理好,以后再公开发布吧。

2. ogbn-mag

任务:节点分类,预测paper节点所属的venue(会议或期刊)(共有349类)
Leaderboard:https://ogb.stanford.edu/docs/leader_nodeprop/#ogbn-mag

可通过PyG直接加载。

3. AMiner (metapath2vec)

任务:节点分类,预测venue或author所属的类别
数据来自Re31:读论文 metapath2vec: Scalable Representation Learning for Heterogeneous Networks一文,最初出自ArnetMiner: Extraction and Mining of Academic Social Networks一文。

可通过PyG直接加载。

4. AMinerNetwork

数据来自https://www.aminer.org/aminernetwork(论文也是ArnetMiner: Extraction and Mining of Academic Social Networks),在A multilayered approach for link prediction in heterogeneous complex networks一文中被用作链路预测任务(但是在这篇文章里叫DBLP,是不是很无语)。

5. DBIS

任务:计算节点相似度
数据来自Re31:读论文 metapath2vec: Scalable Representation Learning for Heterogeneous Networks一文,最初出自Pathsim: Meta path-based top-k similarity search in heterogeneous information networks一文。

不便使用dropbox的读者如需下载数据,可在该GitHub项目README文件中展示的百度网盘链接里下载:https://github.com/PolarisRisingWar/HGNN_Collection
加载方式可参考我写的代码:https://github.com/PolarisRisingWar/HGNN_Collection/blob/master/load_data/dbis_pyg.py

6. DBLP (MAGNN)

任务:节点分类,预测author所属的research areas(共有4类)
数据来自MAGNN: Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding一文,出自Graph-based Consensus Maximization among Multiple Supervised and Unsupervised ModelsGraph regularized transductive classification on heterogeneous information networks

可通过PyG直接加载。

7. IMDB (MAGNN)

任务:节点分类,预测movie所属的category(共有3类)
数据来自MAGNN: Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding一文。

可通过PyG直接加载。
(和下面的IMDB (Simple-HGN)用的是同一套原始数据集)

8. IMDB (Simple-HGN)

任务:节点分类,预测movie标签(共有5类)
数据来自Are We Really Making Much Progress? Revisiting, Benchmarking, and Refining Heterogeneous Graph Neural Networks

9. LastFM

任务:链路预测(user-to-artist)
数据来自Are We Really Making Much Progress? Revisiting, Benchmarking, and Refining Heterogeneous Graph Neural Networks,出自HetRec 2011

可通过PyG直接加载。

10. MovieLens (PyG)

(我在石墨文档中的统计信息是通过2022年9月下载的数据计算得到的)
原始数据是https://files.grouplens.org/datasets/movielens/ml-latest-small.zip
可通过PyG直接加载。

11. ACM

任务:节点分类(paper,共3类)
数据来自Are We Really Making Much Progress? Revisiting, Benchmarking, and Refining Heterogeneous Graph Neural Networks,出自Heterogeneous graph attention network

12. Freebase

任务:节点分类(book,共7类)
数据来自Are We Really Making Much Progress? Revisiting, Benchmarking, and Refining Heterogeneous Graph Neural Networks,出自Heterogeneous Network Representation Learning: A Unified Framework with Survey and Benchmark

13. ogbl-biokg

任务:链路预测
leaderboard:https://ogb.stanford.edu/docs/leader_linkprop/#ogbl-biokg

### 遥感图像跨模态分类中的异质图神经网络 #### 定义与背景 异质图神经网络(Heterogeneous Graph Neural Networks, HGNNS)能够处理节点类型和边类型的多样性,在多源数据融合方面具有显著优势。对于遥感图像而言,其不仅包含视觉信息还可能关联地理坐标、时间戳等多种属性,因此非常适合采用异质图结构来建模这些复杂关系[^1]。 #### 应用场景描述 在实际应用中,通过构建一个由不同类型实体组成的异质图——例如卫星影像像素作为视觉特征节点;地理位置标签或其他辅助元数据作为语义特征节点——可以更全面地捕捉不同模式间潜在的相关性和交互作用。这种基于图的方法有助于提高模型对各类变化因素的理解能力以及泛化表现[^2]。 #### 实现流程概述 为了利用HGNNS完成遥感图像的跨模态分类任务,通常会经历以下几个环节: - **数据预处理**:收集并整理来自多个传感器或平台获取到的不同形式的数据集; - **图构建**:定义合适的相似度量准则建立节点间的连接权重矩阵,并确定哪些对象应该被视作独立个体加入到整体框架之中; - **训练优化过程管理**:选择适当的目标函数指导参数调整方向以期获得更好的预测效果。 ```python import torch from torch_geometric.nn import RGCNConv # 异质图卷积层 class HGNN(torch.nn.Module): def __init__(self, num_node_features, num_classes): super(HGNN, self).__init__() self.conv1 = RGCNConv(num_node_features, 16, num_relations=...) self.conv2 = RGCNConv(16, num_classes, num_relations=...) def forward(self, data): x, edge_index, edge_type = data.x, data.edge_index, data.edge_attr x = self.conv1(x, edge_index, edge_type) x = F.relu(x) x = self.conv2(x, edge_index, edge_type) return F.log_softmax(x, dim=1) model = HGNN(...) optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4) for epoch in range(...): # 训练循环 model.train() optimizer.zero_grad() out = model(data) loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask]) loss.backward() optimizer.step() ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

诸神缄默不语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值