【论文研读】【医学图像】【R2UNet】Recurrent residual U-Net for medical image segmentation

本文仅仅为个人快速阅读记录。论文地址

😄 😆 😊 😃 😏 😍 😘 😚 😳 😌 😆 😁 😉 😜 😝 😀 😗 😙 😛 😴 😟 😦 😧 😮 😬 😕 😯 😑 😒 😅 😓 😥 😩 😔 😞 😖 😨 😰 😣 😢 😭 😂 😲 😱

UNet


Abstract

作者在UNet的基础上提出了 recurrent U-Net模型和 recurrent residual U-Net模型,分别称为RU-Net和R2U-Net。他们有以下优点:

  • 首先,在培训深层架构时,残余单元会有所帮助。
  • 其次,使用循环残差卷积层进行特征积累,保证了分割任务更好的特征表示。
  • 第三,它允许作者设计更好的U-Net架构,具有相同数量的网络参数,具有更好的性能用于医学图像分割。

该模型在视网膜图像血管分割、皮肤癌分割和肺病变分割三个基准数据集上进行了测试。

1 Introduction

2 Related Works

3 RU-Net and R2U-Net Architectures

网络整体的架构如下图:

可见第一眼似乎与UNet没什么太大的区别,实际上是把某些模块替换成了recurrent convolutional layers (RCLs) ,这种模块的输出可表示为:

啊~直接看可能不太懂。所谓的residual即将卷积输出与原图合并,而recurrent即不单要接受 X t X_t Xt X t − 1 X_{t-1} Xt1的合并输入。(好像是这样orz)。

提出的DL模型是堆叠卷积单元的构建块,如 F i g s . 3 ( b ) Figs.3(b) Figs.3(b) F i g s . 3 ( d ) Figs.3(d) Figs.3(d)所示。本文评估了四种不同的架构。首先,使用具有前向卷积层和特征连接的U-Net作为U-Net初级版本中作物-复制方法的替代。该模型的基本卷积单元如 F i g s . 3 ( a ) Figs.3(a) Figs.3(a)所示。其次,使用具有剩余连通性的正卷积层U-Net模型,通常称为剩余U-Net(或ResU-Net),如 F i g s . 3 ( c ) Figs.3(c) Figs.3(c)所示。第三种架构是具有正向RCLsU-Net模型,如 F i g s . 3 ( b ) Figs.3(b) Figs.3(b)所示,称为RU-Net。最后一种架构为具有剩余连通性的递归卷积层U-Net模型,如 F i g s . 3 ( d ) Figs.3(d) Figs.3(d)所示,称为R2U-Net。根据时间步长展开的RCL层的图示如 F i g s . 4 Figs.4 Figs.4所示。这里 t = 2 ( 0   t o   2 ) t = 2(0~to~2) t=2(0 to 2)是指循环卷积操作,包括一个卷积层,然后是两个子序列RCLs

这种架构由卷积编码和解码单元组成,它们与U-Net模型中使用的单元相同。然而,在编码和解码单元中,RCLs(和带有剩余单元的RCLs)被用来代替常规的正向卷积层。

基于cnn的医学图像分割方法显示了从网络一端到另一端的特征积累的有效性。在该模型中,各元素特征求和在U-Net模型之外进行。

根据不同的时间步长进行特征积累,保证了更好更强的特征表示。

我们从基本的U-Net模型中删除了剪切和复制单元,只使用了连接操作。

3.2 Model Architecture and Parameters

不同卷积块的网络架构以及对应的feature map数量如表1所示。

从表中可以清楚地看出,在第2行和第4行中,convolutional blocks中feature map的数量是不变的;

4 Experimental Setup and Evaluation Metrics

介绍了本文采用的诸多指标。。。略

5 Experimental Results

作者在三种不同的情景,如前文介绍即:视网膜血管、皮肤、肺图像数据集上进行了实验并与经典模型做了比较。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值