cv
文章平均质量分 88
xiongxyowo
这个作者很懒,什么都没留下…
展开
-
Python+Opencv图像处理新手入门教程(四):视频内容的读取与导出
一步一步来吧上一节:Python+Opencv图像处理新手入门教程(二):颜色空间转换,图像大小调整,灰度直方图1.Intro今天这节我们主要研究利用阈值处理图像。例如对于输入图像:如何做一个简单的"扫描全能王",让里面的文字变得清晰?2.threshold2.1.函数原型retval, dst = cv.threshold(src, thresh, maxval, type[, dst]) src:原图像dst:输出图像thresh:当前阈值maxVal:最大阈值,一般为.原创 2021-01-05 17:51:42 · 880 阅读 · 1 评论 -
Pytorch初学实战(一):基于的CNN的Fashion MNIST图像分类
1.引言1.1.什么是PytorchPyTorch是一个开源的Python机器学习库。1.2.什么是CNN卷积神经网络(Convolutional Neural Networks)是一种深度学习模型或类似于人工神经网络的多层感知器,常用来分析视觉图像。1.2.什么是MNISTMNIST官网及数据集下载MNIST是一个入门级的计算机视觉数据集,它包含各种手写数字图片,以及每一张图片对应的标签,告诉我们这个是数字几。2.分析完整代码于文末给出。2.1.CNN结构本文采用如下结构的卷积神经网原创 2020-11-30 16:03:54 · 4305 阅读 · 1 评论 -
深度学习入门(一):LeNet-5教程与详解
1.什么是LeNetLeNet5诞生于1994年,是最早的卷积神经网络之一,并且推动了深度学习领域的发展。自从1988年开始,在多年的研究和许多次成功的迭代后,这项由Yann LeCun完成的开拓性成果被命名为LeNet5。LeNet:主要用来进行手写字符的识别与分类确立了CNN的结构,现在神经网络中的许多内容在LeNet的网络结构中都能看到虽然LeNet网络结构比较简单,但是刚好适合神经网络的入门学习。2.分析2.1.LeNet结构如图所示,LeNet共分为7层,分别是:C1,卷原创 2020-11-21 18:49:47 · 20604 阅读 · 6 评论 -
Python+Opencv简易车牌识别(二):形态学运算,HSV颜色空间筛选与图像分割
注:这是依然一个简单的车牌识别demo1.前言在上一篇Python+Opencv简易车牌识别(一):基于HSV颜色空间的图像分割中,我们讲了如何仅基于颜色来进行简单粗暴的车牌分割。今天我们考虑对图像进行一些更复杂的预处理,来使我们的程序能够识别更复杂情境下的车牌。原图依旧如下:完整代码于文章末尾给出。2.分析2.1.读取图片程序开始,读取图片。在这里我们将图片进行等比例放缩,宽度固定为400像素,以防止图片分辨率过高影响处理的性能。然后将图片转化为灰度图以供进一步的处理。# -*- c.原创 2020-11-05 22:46:38 · 3545 阅读 · 0 评论 -
Python+Opencv图像处理新手入门教程(三):阈值与二值化
一步一步来吧上一节:Python+Opencv图像处理新手入门教程(二):颜色空间转换,图像大小调整,灰度直方图1.Intro今天这节我们主要研究利用阈值处理图像。例如对于输入图像:如何做一个简单的"扫描全能王",让里面的文字变得清晰?2.threshold2.1.函数原型retval, dst = cv.threshold(src, thresh, maxval, type[, dst]) src:原图像dst:输出图像thresh:当前阈值maxVal:最大阈值,一般为.原创 2020-11-04 21:58:09 · 776 阅读 · 0 评论 -
Python+Opencv图像处理新手入门教程(二):颜色空间转换,图像大小调整,灰度直方图
一步一步来吧1.什么是图像对于计算机而言,图像的本质是一个由像素点构成的矩阵。例如我们用肉眼很容易分辨一辆汽车的后视镜。然而对计算机而言,后视镜对应的只是一个矩阵,矩阵的各个元素描述了各像素点的性质(如强度)。回过头来看我们一开始的代码:# -*- coding: utf-8 -*-import cv2img = cv2.imread(r'D:\0.jpg')看运行后的变量区:img其实就是一个三维的矩阵(注意左下角的轴,用于切换矩阵的三个维度):2.图像处理2.1.胡乱处.原创 2020-11-04 17:33:33 · 769 阅读 · 0 评论 -
Python+Opencv图像处理新手入门教程(一):介绍,安装与起步
一步一步来吧1.前言先放效果:原图:输出:代码:qwq2.分析2.1.预处理2.1.1.读取图片import cv2import numpy as npimport matplotlib.pyplot as pltimg = cv2.imread(r'D:\car1.png')2.1.2.调整图片大小图片比例保持不变,宽度固定为400。缩小图片有利于减少运算量。m = 400 * img.shape[0] / img.shape[1]img = cv2.resi.原创 2020-11-03 21:47:05 · 813 阅读 · 0 评论 -
Python+Opencv简易车牌识别(一):基于HSV颜色空间的图像分割
注:本文仅用于学习如何利用HSV颜色空间进行简单的图像分割,实际的车牌识别还需要其他一系列复杂的过程在代码头部加入:plt.rcParams['font.sans-serif'] = ['SimHei']plt.rcParams['axes.unicode_minus'] = False加入前:# -*- coding: utf-8 -*-import numpy as npimport matplotlib.pyplot as pltx = np.array([1,2,3,4]);.原创 2020-11-02 19:44:13 · 4142 阅读 · 1 评论