Pytorch torch.device()的简单用法

本文介绍了如何在PyTorch中智能选择设备(cuda或cpu),包括device对象的创建和使用方法,如data和model的设备分配。详细讲解了torch.device的选择及其在模型训练中的重要性,以及指定设备序号的用法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一般来说我们最常见到的用法是这样的:

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

同:

if torch.cuda.is_available():
	device = torch.device("cuda")
else:
	device = torch.device("cpu")

这个device的用处是作为Tensor或者Model被分配到的位置。因此,在构建device对象后,紧跟的代码往往是:

data = data.to(device)
model = Model(...).to(device)

表示将构建的张量或者模型分配到相应的设备上。
更一般的,可以通过:

torch.device('cuda', 0)
torch.device('cuda:0')

来指定使用的具体设备。如果没有显式指定设备序号的话则使用torch.cuda.current_device()对应的序号。

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值