[论文阅读] CKD-TransBTS: Clinical Knowledge-Driven Hybrid Transformer with Modality-Correlated
磁共振图像(MRI)中的脑瘤分割(BTS)对于脑瘤诊断、癌症管理和研究目的至关重要。随着十年来BraTS挑战赛的巨大成功以及CNN和Transformer算法的进步,很多优秀的BTS模型被提出,以解决BTS在不同技术方面的困难。然而,现有的研究几乎没有考虑如何以合理的方式融合多模态图像。在本文中,我们利用放射科医生如何从多种MRI模式诊断脑瘤的临床知识,提出了一个临床知识驱动的脑瘤分割模型,称为CKD-TransBTS。我们没有直接连接所有的模式,而是根据MRI的成像原理,将输入的模式分成两组,重新组织。
原创
2022-09-12 20:00:00 ·
704 阅读 ·
0 评论