DDPM
文章平均质量分 86
xiongxyowo
这个作者很懒,什么都没留下…
展开
-
[论文阅读] SegDiff: Image Segmentation with Diffusion Probabilistic Models
扩散概率方法被用于最先进的图像生成。在这项工作中,我们提出了一种扩展此类模型的方法,用于执行图像分割。该方法进行端到端的学习,而不依赖于预先训练的骨干。输入图像中的信息和当前估计的分割图中的信息是通过两个编码器的输出相加而合并的。然后,额外的编码层和解码器被用来迭代完善分割图,使用一个扩散模型。由于扩散模型是概率性的,它被多次应用,其结果被合并成最终的分割图。新方法在Cityscapes验证集、Vaihingen建筑分割基准和MoNuSeg数据集上产生了最先进的结果。原创 2022-09-20 21:22:54 · 8526 阅读 · 3 评论 -
简单基础入门理解Denoising Diffusion Probabilistic Model,DDPM扩散模型
一篇关于diffusion的尽可能多说人话少说数学的解读。原创 2022-09-19 13:19:37 · 13058 阅读 · 32 评论