【图像去噪】
[2024 综述] Unleashing the Power of Self-Supervised Image Denoising: A Comprehensive Review
论文链接:https://arxiv.org/pdf/2308.00247
深度学习的出现为图像去噪技术带来了革命性的变化。然而,在现实世界场景中获取无噪声对作为监督方法的挑战依然巨大,这促使人们探索更实用的自监督图像去噪方法。本文聚焦于提供有效解决方案的自监督图像去噪方法。综述全面分析了自监督图像去噪方法的最新进展,将其分为三大类:通用方法、盲点网络(BSN)基方法和基于Transformer的方法。对于每一类,提供了简明的理论分析及其实际应用。为了评估这些方法的有效性,在各种数据集上展示了定量和定性的实验结果,并利用经典算法作为基准。此外,还批判性地讨论了这些方法当前的局限性,并为未来的研究提出了有前景的方向。通过提供自监督图像去噪最新发展的详细概述,这篇综述成为该领域研究人员和从业者的宝贵资源,有助于更深入地理解这一新兴领域,并激发进一步的发展。
【Diffusion】
[2024] Rectified Diffusion: Straightness Is Not Your Need in Rectified Flow
论文链接:https://arxiv.org/pdf/2410.07303v1
代码链接:https://github.com/G-U-N/Rectified-Diffusion
扩散模型显著提高了视觉生成的效果,但受限于解决生成常微分方程(ODEs)的计算密集型本质,其生成速度较慢。修正流(Rectified flow),作为一种被广泛认可的解决方案,通过拉直ODE路径来提高生成速度。其关键组件包括:1)使用扩散形式的流匹配,2)采用预测,以及3)执行修正(又称reflow)。本文认为修正成功的主要因素在于使用预训练的扩散模型来获取噪声和样本的匹配对,然后使用这些匹配的噪声-样本对进行重新训练。基于此,组件1)和2)是不必要的。此外,作者强调直线性并不是修正的训练目标;相反,它是流匹配模型的一个特例。更关键的训练目标是实现一阶近似ODE路径,这对于如DDPM和Sub-VP等模型来说本质上是弯曲的。基于这一见解,提出了修正扩散(Rectified Diffusion),它泛化了修正的设计空间和应用范围,涵盖了更广泛的扩散模型类别,而不仅仅局限于流匹配模型。在Stable Diffusion v1-5和Stable Diffusion XL上验证了该方法。所提方法不仅大大简化了基于修正流的前作(例如InstaFlow)的训练过程,还以更低的训练成本实现了更优的性能。