遥感语义分割文献摘要汇总1

老师让写报告,实在是好难憋出来,找了个最笨的方法把摘要全列出来,找里面的相似点,睡前刷一刷。

ClassWise-SAM-Adapter: Parameter Efficient Fine-tuning Adapts Segment Anything to SAR Domain for Semantic Segmentation

SAM模型进行微调改进,

摘要- -在人工智能领域,以高计算能力和广泛数据为支撑的基础模型的出现具有革命性。分割任何事物模型( Segment Anything Model,SAM )建立在拥有数百万参数的视觉变换( Vision Transformer,ViT )模型和庞大的训练数据集SA - 1B上,凭借其显著的语义信息和泛化能力,在各种分割场景中表现优异。这种视觉基础模型的实现激发了人们对计算机视觉中特定下游任务的持续研究。Class Wise-SAM- Adapter ( CWSAM )是为了适应星载合成孔径雷达( SAR )图像地物分类的高性能SAM而设计的。所提出的CWSAM冻结了SAM的大部分参数,并集成了轻量级适配器,这种自适应调整方法可以有效地对SAR图像进行土地覆盖分类,平衡了精度和计算需求。此外,任务特定输入模块通过基于MLP的层来注入SAR图像的低频信息,以提高模型性能。通过大量实验,与传统先进的语义分割算法相比,CWSAM以较少的计算资源显示出增强的性能,突出了利用SAM等基础模型在SAR领域特定下游任务中的潜力。源代码可在:https://github.com/xypu98/CWSAM.

Hi-ResNet: Edge Detail Enhancement for High-Resolution Remote Sensing Segmentation

摘要-高分辨率遥感( HRS )语义分割从高分辨率覆盖区域中提取关键对象。然而,HRS影像中的同一类地物在不同的地理环境中通常表现出显著的尺度和形状差异,使得数据分布难以拟合。此外,复杂的背景环境导致不同类别的物体具有相似的外观,这使得大量的物体被误分类为背景。这些问题使得现有的学习算法都是次优的。在这项工作中,我们通过提出一种具有高效网络结构设计的高分辨率遥感网络( Hi-ResNet )来解决上述问题,该网络由漏斗模块多分支模块组成,具体来说,我们提出了一个漏斗模块进行下采样,降低了计算成本,并从初始输入图像中提取高分辨率的语义信息。然后,我们将处理后的特征图像增量地下采样到多分辨率分支中,以捕获不同尺度下的图像特征。此外,通过窗口多传感头自注意力、压缩激励注意力和深度卷积的设计,利用光效IA块区分具有不同尺度和形状的同一类图像特征。最后,我们的特征精化模块集成了CEA损失函数,对形状相似的类间对象进行消歧,增加了正确预测的数据分布距离。通过有效的预训练策略,我们在三个HRS分割基准上证明了Hi - ResNet相对于现有流行方法的优越性。

SPANet: Spatial Adaptive Convolution Based Content-Aware Network for Aerial Image Semantic Segmentation基于空间自适应卷积的内容感知网络用于航拍图像语义分割

遥感图像的语义分割面临四个重要的困难:1 )复杂的背景;2 )大尺度的差异;3 )大量的小目标;4 )极度的前景-背景不平衡。然而,现有的通用语义分割模型主要关注建模上下文信息,很少关注这4个问题。本文提出了一种增强的遥感图像语义分割框架,通过分层空洞金字塔( HASP )模块和基于空间自适应卷积的FPN解码器框架来解决这些问题。一方面,HASP通过多种速率的空洞卷积级联,进一步扩大网络的感受野,解决了复杂背景和大尺度差异的问题。另一方面,在FPN解码器框架中逐步嵌入空间自适应卷积,以解决小目标众多和极端前景-背景不平衡的问题。此外,构建了基于边界的损失函数,以帮助网络优化相关分割结果。在iSAID和ISPRS法伊英根数据集上的大量实验表明,该结构优于传统的语义分割方法。

Expert teacher based on foundation image segmentation model for object detection in aerial images基于基础图像分割模型的专家教师在航拍图像中进行目标检测

尽管通用目标检测取得了显著的进展,但标记航空图像的缺乏限制了检测器的鲁棒性和泛化性。师生学习在自然图像领域是一种可行的解决方案,但很少有工作关注未标记的航空图像。受计算机视觉领域中具有强大泛化能力的基础模型的启发,提出了一种基于基础图像分割模型的专家教师框架ET - FSM。我们的方法通过为未标记的航空图像生成高质量的伪标注来为学生检测器提供性能增益。在ET - FSM中,我们设计了具有专家指导机制的二值检测器,以充分利用从基础图像分割模型中获得的额外知识,从而准确地进行检测。此外,我们还提出了动量对比度分类模块来区分航空图像中混淆的物体类别。为了证明所提出方法的有效性,我们构建了一个覆盖各种场景的无标签航拍图像数据集。实验在不同类型的学生探测器上进行。结果表明,与现有方法相比,所提出的方法获得了更优越的性能,并允许学生检测器在标记较少的航空图像中实现完全监督的性能。我们的数据集和代码可在https:/ / github.com / cq100 / ET - FSM获得。

Switching Temporary Teachers for Semi-Supervised Semantic Segmentation切换临时教师进行半监督语义分割

半监督语义分割中,教师-学生框架主要使用指数移动平均( EMA )来更新基于学生权重的单个教师权重。然而,EMA的更新提出了一个问题,即教师和学生的权重正在耦合,造成了潜在的性能瓶颈。此外,当使用更复杂的标签(如分割掩码)但标注数据较少时,这个问题可能会变得更加严重。本文介绍的"双师型"教师是一种简单而有效的方法,通过聘请双师型临时性教师来缓解学生的耦合问题。临时性教师轮流工作,并逐步提高,从而始终保持教师与学生的亲密关系。具体来说,临时教师周期性地轮流生成伪标注来训练一个学生模型,并保持每个时期学生模型的鲜明特征。因此,双教师在PASCAL VOC、Cityscapes和ADE20K测试集上取得了有竞争力的表现,其训练时间显著短于最先进的方法。此外,我们证明了我们的方法是模型不可知的,并且兼容基于CNN和基于Transformer的模型。代码可在https://github.com/naver-ai/dual-teacher.下载

Contextual Hourglass Network for Semantic Segmentation of High Resolution Aerial Imagery高分辨率航空影像语义分割的上下文沙漏网络

航空影像的语义分割是遥感影像分析中一个具有挑战性的重要问题。近年来,随着深度学习的成功,各种基于卷积神经网络( CNN )的模型被开发出来。然而,由于对象的大小不一和类别标签不平衡,获得精确的像素级语义分割结果具有一定的挑战性。为了解决这些挑战,我们提出了一种新的语义分割方法,并将其命名为Contextual沙漏网络。在我们的方法中,为了提高预测的鲁棒性,我们设计了一个新的上下文沙漏模块࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

请北尚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值