吴恩达老师深度学习跟随作业(一)---------识别猫(IMUDGES)

参照博客  https://blog.csdn.net/u013733326/article/details/79639509 

开始之前需要有lr_utils.py和datasets文件夹,从上面的参照博客中下载吧。。

下载完成后解压至自己创建文件同级中

 

以下是需要的库

import numpy as np
import matplotlib.pyplot as plt
import h5py
from lr_utils import load_dataset  #这个是自定义库,包含在刚刚下载之中

下面为 lr_utils.py 中的代码:

import numpy as np
import h5py
    
    
def load_dataset():
    train_dataset = h5py.File('datasets/train_catvnoncat.h5', "r")
    train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # 训练集图像数据
    train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # 训练集图像对应分类植,(【0|1】:0为不是猫,1是猫)

    test_dataset = h5py.File('datasets/test_catvnoncat.h5', "r")
    test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # 测试据图像数据
    test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # 测试集图像对应的分类植,同上

    classes = np.array(test_dataset["list_classes"][:]) # 所存为bytes类型的两个字符串:[b 'non-cat' , b'cat']
    
    train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
    test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))
    
    return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes

下面开始写主程序(十分详细):

 

import numpy as np
import matplotlib.pyplot as plt
import h5py
from lr_utils import load_dataset

train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()

"""
#看看我们加载了什么
plt.imshow(train_set_x_orig[25])#此函数负责对图像进行处理,并显示其格式,但是不能显示
plt.show()#真正显示的函数  (原博客没有这个,让我这个菜鸡费了些功夫)

print("train_set_y=" + str(train_set_y)) #查看训练集标签
"""

m_train = train_set_y.shape[1] #训练集里图片的数量
# train_set_y对应的是训练集中图像的分类植,图像数量对应值的数量,因此train_set_y.shape[1]代表的一维长度就是图片的数量
m_test = test_set_y.shape[1] #测试集里图像的数量
num_px = train_set_x_orig.shape[1] #训练测试集里面的图片的宽度和高度(均为64*64)
# train_set_x_orig对应训练集中的图像数据,train_set_x_orig.shape[1] 是图像的长度或宽度

#现在看一看我们加载的东西的具体情况
print ("训练集的数量: m_train = " + str(m_train))
print ("测试集的数量 : m_test = " + str(m_test))
print ("每张图片的宽/高 : num_px = " + str(num_px))
print ("每张图片的大小 : (" + str(num_px) + ", " + str(num_px) + ", 3)")
print ("训练集_图片的维数 : " + str(train_set_x_orig.shape))
print ("训练集_标签的维数 : " + str(train_set_y.shape))
print ("测试集_图片的维数: " + str(test_set_x_orig.shape))
print ("测试集_标签的维数: " + str(test_set_y.shape))

"""
为了方便,我们要把维度为(64,64,3)的numpy数组重新构造为(64 x 64 x 3,1)的数组,
要乘以3的原因是每张图片是由64x64像素构成的,而每个像素点由(R,G,B)三原色构成的,
所以要乘以3。在此之后,我们的训练和测试数据集是一个numpy数组,【每列代表一个平坦的图像】
应该有m_train和m_test列
"""

#X_flatten = X.reshape(X.shape[0], -1).T     X.T 是 X的转置
#将训练集的维度降低 并转置
train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T
#其中参数”-1“表示让计算机算出列

#将测试集的维度降低 并转置
test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T

print ("训练集降维最后的维度: " + str(train_set_x_flatten.shape))
print ("训练集_标签的维数 : " + str(train_set_y.shape))
print ("测试集降维之后的维度: " + str(test_set_x_flatten.shape))
print ("测试集_标签的维数 : " + str(test_set_y.shape))

#标准化数据
train_set_x = train_set_x_flatten / 255
test_set_x = test_set_x_flatten / 255

"""
建立神经网络的主要步骤:
1.定义当前损失(例如输入特征的数量)
2.初始化模型的参数
3.循环
  3.1 计算当前损失(正向传播)
  3.2 计算当前梯度(反向传播)
  3.3 更新参数(梯度下降)
"""
#构建signoid(),使用sigmoid(w ^ T  X  +  b)计算来做出预测值
def sigmoid(z):
    """
    参数: z —— 任何大小的标量或numpy数组

    返回: s - signoid(z)
    """
    s = 1 / (1 + np.exp(-z))
    return s

"""
# 测试sigmoid() 检查一下 是否符合我们的条件
print("====================测试sigmoid====================")
print ("sigmoid(0) = " + str(sigmoid(0)))
print ("sigmoid(9.2) = " + str(sigmoid(9.2)))
"""

#初始化参数 w 和 b
def initialize_with_zero(dim):
    """
    此函数为w创建一个维度为(dim,1)的0向量,并将b初始化为0。

        参数:
            dim  - 我们想要的w矢量的大小(或者这种情况下的参数数量)

        返回:
            w  - 维度为(dim,1)的初始化向量。
            b  - 初始化的标量(对应于偏差)
    """
    w = np.zeros(shape=(dim, 1))
    b = 0
    #使用断言来确保要的数据是正确的
    assert(w.shape == (dim, 1)) # w 的维度是(dim,1)
    assert (isinstance(b, float) or isinstance(b, int)) #b的类型是float或者是int

    return (w, b)

#执行向前 向后传播步骤来学习参数,下面实现计算成本函数及其渐变的函数propagate()
def propagate(w,b,X,Y):
    """
    实现前向和后向传播的成本函数及其梯度。
    参数:
        w  - 权重,大小不等的数组(num_px * num_px * 3,1)
        b  - 偏差,一个标量
        X  - 矩阵类型为(num_px * num_px * 3,训练数量)
        Y  - 真正的“标签”矢量(如果非猫则为0,如果是猫则为1),矩阵维度为(1,训练数据数量)

    返回:
        cost- 逻辑回归的负对数似然成本
        dw  - 相对于w的损失梯度,因此与w相同的形状
        db  - 相对于b的损失梯度,因此与b的形状相同
    """
    m = X.shape[1]

    #正向传播
    A = sigmoid(np.dot(w.T , X) + b) #计算激活值
    cost = (-1 / m) * np.sum(Y * np.log(A) + (1 - Y) * (np.log(1 - A)))#计算成本

    #反向传播
    dw = (1 / m) * np.dot(X, (A - Y).T)
    db = (1 / m) * np.sum(A - Y)

    #使用断言确保数据正确
    assert(dw.shape == w.shape)
    assert(db.dtype == float)
    cost = np.squeeze(cost)
    assert(cost.shape == ())

    #创建一个字典
    grads = {
        "dw":dw,
        "db":db
    }
    return (grads, cost)

"""
#测试一波
#初始化参数
w, b, X, Y = np.array([[1], [2]]), 2, np.array([[1,2], [3,4]]), np.array([[1, 0]])
grads, cost = propagate(w, b, X, Y)
print ("dw = " + str(grads["dw"]))
print ("db = " + str(grads["db"]))
print ("cost = " + str(cost))
"""

#接下来 使用渐变下降更新参数
#目标是通过最小化成本函数J学习w和b,对于参数θ ,更新规则是 θ=θ−α dθ,其中 α 是学习率

def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False):
    """
 此函数通过运行梯度下降算法来优化w和b

    参数:
        w  - 权重,大小不等的数组(num_px * num_px * 3,1)
        b  - 偏差,一个标量
        X  - 维度为(num_px * num_px * 3,训练数据的数量)的数组。
        Y  - 真正的“标签”矢量(如果非猫则为0,如果是猫则为1),矩阵维度为(1,训练数据的数量)
        num_iterations  - 优化循环的迭代次数
        learning_rate  - 梯度下降更新规则的学习率
        print_cost  - 每100步打印一次损失值

    返回:
        params  - 包含权重w和偏差b的字典
        grads  - 包含权重和偏差相对于成本函数的梯度的字典
        成本 - 优化期间计算的所有成本列表,将用于绘制学习曲线。

    提示:
    我们需要写下两个步骤并遍历它们:
        1)计算当前参数的成本和梯度,使用propagate()。
        2)使用w和b的梯度下降法则更新参数。
    """
    costs = []

    for i in range(num_iterations):
        grads, cost = propagate(w, b, X, Y)

        dw = grads["dw"]
        db = grads["db"]

        w = w - learning_rate * dw
        b = b - learning_rate * db

        #记录成本
        if i % 100 == 0:
            costs.append(cost)

        #打印成本数据
        if(print_cost) and (i % 100 == 0):
            print("迭代的次数: %i , 误差值: %f" % (i, cost))

    params = {
        "w":w,
        "b":b
    }
    grads = {
        "dw":dw,
        "db":db
    }
    return (params, grads, costs)

"""
#测试优化函数
print("====================测试optimize====================")
w, b, X, Y = np.array([[1], [2]]), 2, np.array([[1,2], [3,4]]), np.array([[1, 0]])
params , grads , costs = optimize(w , b , X , Y , num_iterations=100 , learning_rate = 0.009 , print_cost = False)
print ("w = " + str(params["w"]))
print ("b = " + str(params["b"]))
print ("dw = " + str(grads["dw"]))
print ("db = " + str(grads["db"]))
"""

#预测函数
"""
计算预测有两个步骤:
计算 Y^=A=σ(wTX+b)
将a的值变为0(如果激活值<= 0.5)或者为1(如果激活值> 0.5),
"""
#然后将预测值存储在向量Y_prediction中
def predict(w, b, x):
    """
    使用学习逻辑回归参数logistic (w,b)预测标签是0还是1,

    参数:
        w  - 权重,大小不等的数组(num_px * num_px * 3,1)
        b  - 偏差,一个标量
        X  - 维度为(num_px * num_px * 3,训练数据的数量)的数据

    返回:
        Y_prediction  - 包含X中所有图片的所有预测【0 | 1】的一个numpy数组(向量)

    """
    m = x.shape[1]
    Y_prediction = np.zeros((1, m))
    w = w.reshape(x.shape[0], 1)

    #计预测猫在图片中出现的概率
    A = sigmoid(np.dot(w.T, x) + b)

    for i in range(A.shape[1]):
        # 将概率a [0,i]转换为实际预测p [0,i]
        Y_prediction[0, i] = 1 if A[0, i] > 0.5 else 0

    #使用断言
    assert (Y_prediction.shape == (1, m))

    return Y_prediction
"""
#测试~~~
w, b, X, Y = np.array([[1], [2]]), 2, np.array([[1,2], [3,4]]), np.array([[1, 0]])
print("predictions = " + str(predict(w, b, X)))
"""

#整合一下
def model(X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5, print_cost = False):
    """
        通过调用之前实现的函数来构建逻辑回归模型

        参数:
            X_train  - numpy的数组,维度为(num_px * num_px * 3,m_train)的训练集
            Y_train  - numpy的数组,维度为(1,m_train)(矢量)的训练标签集
            X_test   - numpy的数组,维度为(num_px * num_px * 3,m_test)的测试集
            Y_test   - numpy的数组,维度为(1,m_test)的(向量)的测试标签集
            num_iterations  - 表示用于优化参数的迭代次数的超参数
            learning_rate  - 表示optimize()更新规则中使用的学习速率的超参数
            print_cost  - 设置为true以每100次迭代打印成本

        返回:
            d  - 包含有关模型信息的字典。
    """
    w, b = initialize_with_zero(X_train.shape[0])

    parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost)

    #从字典”参数“中  检索参数w和b
    w, b = parameters["w"], parameters["b"]

    #预测测试/训练集的例子
    Y_prediction_test = predict(w, b, X_test)
    Y_prediction_train = predict(w, b, X_train)

    #打印训练后的准确集
    print("训练集准确性: " , format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100), "%")
    print("测试集准确性: " , format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100), "%")

    d = {
        "costs": costs,
        "Y_prediction_test": Y_prediction_test,
        "Y_prediction_train": Y_prediction_train,
        "w": w,
        "b": b,
        "learning_rate": learning_rate,
        "num_iterations": num_iterations
    }

    return d

#正式的实际测试
d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations=2000, learning_rate=0.005, print_cost=True)

#绘制图
osts = np.squeeze(d['costs'])
plt.plot(osts)
plt.ylabel('cost')
plt.xlabel('iterations (per hundreds)')
plt.title("Learning rate =" + str(d["learning_rate"]))
plt.show()

OK, 就到这里了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值