2.1_最小错误率贝叶斯决策

  • 目标:最小化错误率
  • 问题:错误率是啥?

先定义错误率:给定样本 x d \mathbf{x}_d xd, 是d维列向量(具有d个特征的样本),把该样本分类错误的概率,比如把明明是一只狗,分类成猫的概率是多少,这就是对于该样本的分类的错误概率!对象是一个样本。

那什么又是错误率呢?:
错误率指的就是对于所有的样本,把每个样本分错的概率加权平均就是对于整个样本集的分类错误率。即错误概率的期望。对象是所有样本。

接下来给出具体分析,考虑二分类情况 ω 1 \omega_1 ω1 ω 2 \omega_2 ω2, 给定一个样本 x d \mathbf{x}_d xd, x d \mathbf{x}_d xd要么属于 ω 1 \omega_1 ω1类,要么属于 ω 2 \omega_2 ω2类。假定各类的先验概率 P ( ω i ) P(\omega_i) P(ωi)已知,且已知各类中的样本分布密度,即类条件概率密度 P ( x d ∣ ω i ) P(\mathbf{x}_d|\omega_i) P(xdωi)

我们要做的决策就是对于某个未知样本 x d \mathbf{x}_d xd, 判断该样本属于哪一类。
即给定 x d , x d ∈ ω 1 o r ∈ ω 2 即给定\mathbf{x}_d, \\ \mathbf{x}_d \in \omega_1\quad or \in \omega_2 即给定xd,xdω1orω2

翻译成概率就是 P ( ω i ∣ x d ) P(\omega_i|\mathbf{x}_d) P(ωixd)这个条件概率的大小。

定义错误率为如下:
p ( e ∣ x d ) = { P ( ω 2 ∣ x d ) , x d ∈ ω 1 P ( ω 1 ∣ x d ) , x d ∈ ω 2 (1) p(e|\mathbf{x}_d) = \begin{cases} P(\omega_2|\mathbf{x}_d),\quad \mathbf{x}_d \in \omega_1 \\ P(\omega_1|\mathbf{x}_d),\quad \mathbf{x}_d \in \omega_2 \end{cases} \tag{1} p(exd)={P(ω2xd),xdω1P(ω1xd),xdω2(1)

定义错误率:(为错误概率的期望,考虑所有的样本)
P ( e ) = E [ p ( e ∣ x d ) ] = ∫ p ( e ∣ x d ) p ( x d ) d x d (2) P(e)=E[p(e|\mathbf{x}_d)]=\int p(e|\mathbf{x}_d)p(\mathbf{x}_d)d\mathbf{x}_d \tag{2} P(e)=E[p(exd)]=p(exd)p(xd)dxd(2)
其中 p ( x d ) p(\mathbf{x}_d) p(xd)就是所有样本对应的概率密度。上式就是代表所有样本分类错误概率的加权平均。

目标:最小化式(2)错误率,即
m i n ∫ p ( e ∣ x ) p ( x ) d x (3) min \int p(e|\mathbf{x})p(\mathbf{x})d\mathbf{x} \tag{3} minp(ex)p(x)dx(3)

对于式(3)的积分,我们知道样本本身的分布是一定的,即概率密度 p ( x ) p(\mathbf{x}) p(x)不会因分类的错误而改变,所以最小化式(3),可以简化成最小化每个样本的错误概率就行了,即
m i n p ( e ∣ x ) (4) min \quad p(e|\mathbf{x}) \tag{4} minp(ex)(4)

又由式(1)可知:
m i n p ( e ∣ x ) = { m i n P ( ω 2 ∣ x ) , x ∈ ω 1 m i n P ( ω 1 ∣ x ) , x ∈ ω 2 (5) min\quad p(e|\mathbf{x}) = \begin{cases} min\quad P(\omega_2|\mathbf{x}),\quad \mathbf{x} \in \omega_1 \\ min \quad P(\omega_1|\mathbf{x}),\quad \mathbf{x}\in \omega_2 \end{cases} \tag{5} minp(ex)={minP(ω2x),xω1minP(ω1x),xω2(5)

注:
P ( ω 1 ∣ x ) + P ( ω 2 ∣ x ) = 1 (6) P(\omega_1|\mathbf{x}) + P(\omega_2|\mathbf{x}) = 1\tag{6} P(ω1x)+P(ω2x)=1(6)

则对于一个本属于 ω 1 \omega_1 ω1类的样本 x \mathbf{x} x, 要最小化 P ( ω 2 ∣ x ) P(\omega_2|\mathbf{x}) P(ω2x), 就是最大化 P ( ω 1 ∣ x ) P(\omega_1|\mathbf{x}) P(ω1x), 即:
g i v e n x ∈ ω 1 m i n P ( ω 2 ∣ x ) = > m a x P ( ω 1 ∣ x ) (7) given \quad \mathbf{x} \in \omega_1 \\ min\quad P(\omega_2|\mathbf{x}) => max\quad P(\omega_1|\mathbf{x}) \tag{7} givenxω1minP(ω2x)=>maxP(ω1x)(7)
所以最小错误率就是最大化该样本的后验概率。得以下决策规则:
i f P ( ω 1 ∣ x ) > P ( ω 2 ∣ x ) , t h e n x ∈ ω 1 e l s e x ∈ ω 2 if \quad P(\omega_1|\mathbf{x}) > P(\omega_2|\mathbf{x}), then \quad \mathbf{x}\in \omega_1 \quad else \quad \mathbf{x}\in \omega_2 ifP(ω1x)>P(ω2x),thenxω1elsexω2
还可以记作:
i f P ( ω 1 ∣ x ) ≷ P ( ω 2 ∣ x ) t h e n x ∈ { ω 1 ω 2 (8) if \quad P(\omega_1|\mathbf{x}) \gtrless P(\omega_2|\mathbf{x}) \quad then\quad \mathbf{x}\in \begin{cases}\omega_1 \\ \omega_2\end{cases} \tag{8} ifP(ω1x)P(ω2x)thenx{ω1ω2(8)

式(8)即为最小错误率贝叶斯决策,其它等价形式为:
P ( ω i ∣ x ) = max ⁡ j = 1 , 2 P ( ω j ∣ x ) , t h e n x ∈ ω i (9) P(\omega_i|\mathbf{x}) = \max_{j=1, 2}P(\omega_j|\mathbf{x}),\quad then \quad \mathbf{x}\in \omega_i \tag{9} P(ωix)=j=1,2maxP(ωjx),thenxωi(9)

根据贝叶斯定理,可得:
P ( ω i ∣ x ) = P ( ω i , x ) P ( x ) = P ( x ∣ ω i ) P ( ω i ) ∑ i = 1 2 P ( x ∣ ω i ) P ( ω i ) (10) P(\omega_i|\mathbf{x}) = \frac{P(\omega_i, \mathbf{x})}{P(\mathbf{x})}=\frac{P(\mathbf{x}|\omega_i)P(\omega_i)}{\sum\limits_{i=1}^2P(\mathbf{x}|\omega_i)P(\omega_i)} \tag{10} P(ωix)=P(x)P(ωi,x)=i=12P(xωi)P(ωi)P(xωi)P(ωi)(10)

对于上式, P ( ω i ∣ x ) P(\omega_i|\mathbf{x}) P(ωix)代表后验概率, P ( x ∣ ω i ) P(\mathbf{x}|\omega_i) P(xωi)代表类条件概率, P ( ω i ) P(\omega_i) P(ωi)代表先验概率,同时分母是代表样本的分布,是一定的,所以这里对后验的影响只需考虑分子即可,即类条件概率和先验概率。所以决策规则中,两个后验概率的比较,可以转换成式(10)中分子的比较, 可以写成如下:
P ( ω 1 ∣ x ) ≷ P ( ω 2 ∣ x ) \quad P(\omega_1|\mathbf{x}) \gtrless P(\omega_2|\mathbf{x}) P(ω1x)P(ω2x)
= > P ( x ∣ ω 1 ) P ( ω 1 ) ≷ P ( x ∣ ω 2 ) P ( ω 2 ) (11) => P(\mathbf{x}|\omega_1)P(\omega_1) \gtrless P(\mathbf{x}|\omega_2)P(\omega_2) \tag{11} =>P(xω1)P(ω1)P(xω2)P(ω2)(11)
又因为先验 P ( ω i ) P(\omega_i) P(ωi)与样本是无关的,所以继续整理式(11),得决策规则为:
i f l ( x ) = P ( x ∣ ω 1 ) P ( x ∣ ω 2 ) ≷ P ( ω 2 ) P ( ω 1 ) = λ ( 阈值 ) , t h e n x ∈ { ω 1 ω 2 (12) if \quad l(\mathbf{x})=\frac{P(\mathbf{x}|\omega_1)}{P(\mathbf{x}|\omega_2)} \gtrless \frac{P(\omega_2)}{P(\omega_1)} = \lambda (阈值), \quad then \quad \mathbf{x}\in \begin{cases}\omega_1 \\ \omega_2\end{cases} \tag{12} ifl(x)=P(xω2)P(xω1)P(ω1)P(ω2)=λ(阈值),thenx{ω1ω2(12)

对于式(12)出现的 l ( x ) l(\mathbf{x}) l(x), 可知类条件概率密度 P ( x ∣ ω i ) P(\mathbf{x}|\omega_i) P(xωi)反映了在 ω i \omega_i ωi类中,观察到样本 x \mathbf{x} x的相对可能性(likelihood),似然度,故 l ( x ) l(\mathbf{x}) l(x)被称作似然比(likelihood ratio)。如果对其取负对数,就化成了加法,即:
h ( x ) = − ln ⁡ l ( x ) = − ln ⁡ P ( x ∣ ω 1 ) + ln ⁡ P ( x ∣ ω 2 ) (13) h(\mathbf{x}) = -\ln{l(\mathbf{x})}=-\ln{P(\mathbf{x}|\omega_1)} + \ln{P(\mathbf{x}|\omega_2)} \tag{13} h(x)=lnl(x)=lnP(xω1)+lnP(xω2)(13)
= > i f h ( x ) ≷ ln ⁡ P ( ω 1 ) P ( ω 2 ) , t h e n x { ω 1 ω 2 (14) => if \quad h(\mathbf{x}) \gtrless \ln{\frac{P(\omega_1)}{P(\omega_2)}}, \quad then \quad \mathbf{x} \begin{cases}\omega_1 \\ \omega_2 \end{cases} \tag{14} =>ifh(x)lnP(ω2)P(ω1),thenx{ω1ω2(14)

以上依然是决策规则,只是使用对数简化了计算,但本质没有改变。

二. 多类情况

决策规则可以表示为:
i f P ( ω i ∣ x ) = max ⁡ j = 1 , 2 , . . . , n P ( ω j ∣ x ) , t h e n x ∈ ω i (15) if \quad P(\omega_i|\mathbf{x}) = \max_{j=1,2,...,n} P(\omega_j|\mathbf{x}), \quad then \quad \mathbf{x}\in \omega_i \tag{15} ifP(ωix)=j=1,2,...,nmaxP(ωjx),thenxωi(15)
或者等价于:
i f P ( ω i ∣ x ) = P ( x ∣ ω i ) P ( ω i ) = max ⁡ j = 1 , 2 , . . . , n P ( ω j ∣ x ) , t h e n x ∈ ω i (16) if \quad P(\omega_i|\mathbf{x}) = P(\mathbf{x}|\omega_i)P(\omega_i) = \max_{j=1,2,...,n} P(\omega_j|\mathbf{x}), \quad then \quad \mathbf{x}\in \omega_i \tag{16} ifP(ωix)=P(xωi)P(ωi)=j=1,2,...,nmaxP(ωjx),thenxωi(16)

接下来定义什么是判别函数

P ( ω i ∣ x ) P(\omega_i|\mathbf{x}) P(ωix)或者 P ( x ∣ ω i ) P ( ω i ) P(\mathbf{x}|\omega_i)P(\omega_i) P(xωi)P(ωi)为该类的一个判别函数 g i ( x ) g_i(\mathbf{x}) gi(x)
而所谓的决策过程,就是比较各类的判别函数的大小,取 max ⁡ g i ( x ) \max g_i(\mathbf{x}) maxgi(x)

以上就是有关最小错误率贝叶斯决策的所有,核心是在于将最小错误率转换成了最大化后验概率,接下来将分析最小风险贝叶斯决策,即分错了是有损失的,有风险的。从风险角度去考虑,可能会得到与错误率截然不同的决策结果。

  • 46
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值