在运行MDSR程序时,分别两次出现CUDA out of memory.
第一次是在数据训练的过程中,由于Batch_size设置过大,导致内存不足,将其设置较小即可解决。
第二次是在测试过程中,由于是直接导入训练好的模型,不需要再次进行反向传播。因此在进行前向传播之前加入
with torch.no_grad():
即可解决。
即
with torch.no_grad(): res = net.forward_pred(input, scale) # 输入图像的前向传播
在运行MDSR程序时,分别两次出现CUDA out of memory.
第一次是在数据训练的过程中,由于Batch_size设置过大,导致内存不足,将其设置较小即可解决。
第二次是在测试过程中,由于是直接导入训练好的模型,不需要再次进行反向传播。因此在进行前向传播之前加入
with torch.no_grad():
即可解决。
即
with torch.no_grad(): res = net.forward_pred(input, scale) # 输入图像的前向传播