【计算几何】 凸包问题

目录

一. 凸包概念

1. 凸多边形

2. 凸包

二. 凸包性质

三. 凸包求解

1.  Graham扫描算法

2. Andrew算法

2.1 算法思路

2.2 代码模板


一. 凸包概念

1. 凸多边形

凸多边形(Convex Polygon)指如果把一个多边形的所有边中,任意一条边向两方无限延长成为一直线时,其他各边都在此直线的同旁,那么这个多边形就叫做凸多边形,其内角应该全不是优角,任意两个顶点间的线段位于多边形的内部或边上。

2. 凸包

        一组平面上的点,求一个包含所有点的最小的凸多边形,这就是凸包问题了。这可以形象地想成这样:在地上放置一些不可移动的木桩,用一根绳子把他们尽量紧地圈起来,并且为凸边形,这就是凸包了。

二. 凸包性质

1. 凸包上的每一个点与它相邻点构成的角都是向左转的。

2. 凸包对应了包含这些点的最小凸多边形,最大多边形面积,最小多边形周长

三. 凸包求解

Problem Description

给定二维平面上n个点,求出这n个点所对应的凸包。

1.  Graham扫描算法

        平均复杂度为O(nlogn),该算法较为复杂且比较少用。参考如下:
https://www.cnblogs.com/wuwangchuxin0924/p/6223152.htmlicon-default.png?t=N7T8https://www.cnblogs.com/wuwangchuxin0924/p/6223152.html

2. Andrew算法

2.1 算法思路

        定义以水平为x轴,竖直为y轴,给出点坐标,叉积z轴指向屏幕外正向,指向内负向。其算法过程如下:

(1)初始化:将所有的点,按照x由小到大排序(x相同时按照y由小到大排序),则最左侧第一个点和最右侧最后一个点一定在凸包上;

(2)第一遍扫描:从左到右,先将第一个点P0放入栈中,P1不一定在不在凸包上,先放入栈中;然后若P0P1\timesP0P3 > 0,则说明P3在左拐方向,符合凸包定义,入栈继续判断;每次取出栈顶两点构成向量,若跟新点符合凸包定义则入栈,否则就删除栈顶元素直到符合。这时一定会形成一个下凸包;

(3)第二遍扫描:从右到左,同上做法,这时一定会形成一个上凸包;

(4)合并凸包:上下凸包合并就是一个凸包;

        该算法的平均复杂度为O(n),其中nlogn排序+n扫描。其正确性证明参考:二位凸包Andrew算法

2.2 代码模板

        Poj3348 Cows

#include <iostream>
//#include<bits/stdc++.h>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define eps 1e-6
const int maxn = 100000 + 7;
int dcmp(double x){if(fabs(x)<eps)return 0;else return x<0?-1:1;}
struct Point{
   double x,y;
   Point(double xx = 0,double yy = 0):x(xx),y(yy) {}
   bool operator<(const Point&another)const{
        if(x==another.x)return y<another.y;
        return x<another.x;
   }
}p[maxn],ch[maxn];
typedef Point Vector;
Vector operator+(Vector A,Vector B){return Vector(A.x+B.x,A.y+B.y);}
Vector operator-(Vector A,Vector B){return Vector(A.x-B.x,A.y-B.y);}
double Length(Vector A){return sqrt(A.x*A.x+A.y*A.y);}
double Cross(Vector A,Vector B){
     return A.x*B.y - B.x*A.y;
}
double ConvexPolygonArea(Point *point,int len){//求面积
    double area = 0;
    for(int i = 1;i<len-1;i++){
        area+=Cross(point[i]-point[0],point[i+1]-point[0]);
    }
    return area/2;
}
double ConvexPolygonPerimeter(Point *point,int len){//求周长
   double l = 0;
   for(int i = 1;i<len;i++){
       l+=Length(point[i]-point[i-1]);
   }
   l+=Length(point[0]-point[len-1]);
   return l;
}
int Andrew(int n){
   sort(p,p+n);
   int m = 0;
   for(int i = 0;i<n;i++){//第一遍扫描
      while(m>1&&Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0)m--;
      ch[m++] = p[i];
   }
   int k = m;
   for(int i = n-2;i>=0;i--){//第二遍扫描
       while(m>k&&Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0)m--;
       ch[m++] = p[i];
   }
   if(n>1)m--;
   return m;
}
int main()
{
    int n;
    while(scanf("%d",&n)!=EOF){
        for(int i = 0;i<n;i++){
            scanf("%lf%lf",&p[i].x,&p[i].y);
        }
        int ans = Andrew(n);
        printf("%d\n",(int)(ConvexPolygonArea(ch,ans)/50));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿阿阿安

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值