《误差理论》——误差的合成与分配

误差的合成与分配

1、函数系统误差计算

y = f ( x 1 , x 2 , . . . , x n ) y=f(x_1,x_2,...,x_n) y=f(x1,x2,...,xn)其中 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn为各个直接测量值; y y y为间接测量值
函数系统误差 △ y \bigtriangleup y y △ y = ∂ f ∂ x 1 △ x 1 + ∂ f ∂ x 2 △ x 2 + . . . + ∂ f ∂ x n △ x n , i = 1 , 2 , . . . , n \bigtriangleup y=\frac{\partial f}{\partial x_1}\bigtriangleup x_1+\frac{\partial f}{\partial x_2}\bigtriangleup x_2+...+\frac{\partial f}{\partial x_n}\bigtriangleup x_n, i=1,2,...,n y=x1fx1+x2fx2+...+xnfxn,i=1,2,...,n

2、函数随机误差计算

σ y 2 = ( ∂ f ∂ x 1 ) 2 σ x 1 2 + ( ∂ f ∂ x 2 ) 2 σ x 2 2 + . . . ( ∂ f ∂ x n ) 2 σ x n 2 + 2 ∑ 1 ≤ i < j n ( ∂ f ∂ x i ∂ f ∂ x j K i j ) \sigma_y^2={(\frac{\partial f}{\partial x_1})}^2\sigma_{x_1}^2+{(\frac{\partial f}{\partial x_2})}^2\sigma_{x_2}^2+...{(\frac{\partial f}{\partial x_n})}^2\sigma_{x_n}^2+2\sum^{n}_{1\le i<j}(\frac{\partial f}{\partial x_i}\frac{\partial f}{\partial x_j}K_{ij}) σy2=(x1f)2σx12+(x2f)2σx22+...(xnf)2σxn2+21i<jn(xifxjfKij)其中 K i j = ∑ m = 1 N δ x i m δ x j m N K_{ij}=\frac{\sum_{m=1}^{N}\delta_{x_{im}}\delta_{x_{jm}}}{N} Kij=Nm=1Nδximδxjm。当N适当大时, K i j = 0 K_{ij}=0 Kij=0,则 σ y 2 = ( ∂ f ∂ x 1 ) 2 σ x 1 2 + ( ∂ f ∂ x 2 ) 2 σ x 2 2 + . . . + ( ∂ f ∂ x n ) 2 σ x n 2 \sigma_y^2={(\frac{\partial f}{\partial x_1})}^2\sigma_{x_1}^2+{(\frac{\partial f}{\partial x_2})}^2\sigma_{x_2}^2+...+{(\frac{\partial f}{\partial x_n})}^2\sigma_{x_n}^2 σy2=(x1f)2σx12+(x2f)2σx22+...+(xnf)2σxn2 σ y = ( ∂ f ∂ x 1 ) 2 σ x 1 2 + ( ∂ f ∂ x 2 ) 2 σ x 2 2 + . . . + ( ∂ f ∂ x n ) 2 σ x n 2 \sigma_y=\sqrt{{(\frac{\partial f}{\partial x_1})}^2\sigma_{x_1}^2+{(\frac{\partial f}{\partial x_2})}^2\sigma_{x_2}^2+...+{(\frac{\partial f}{\partial x_n})}^2\sigma_{x_n}^2} σy=(x1f)2σx12+(x2f)2σx22+...+(xnf)2σxn2 同理,极限误差 δ l i m   y = ( ∂ f ∂ x 1 ) 2 δ l i m   x 1 2 + ( ∂ f ∂ x 2 ) 2 δ l i m   x 2 2 + . . . + ( ∂ f ∂ x n ) 2 δ l i m   x n 2 \delta_{lim\ y}=\sqrt{{(\frac{\partial f}{\partial x_1})}^2\delta_{lim\ x_1}^2+{(\frac{\partial f}{\partial x_2})}^2\delta_{lim\ x_2}^2+...+{(\frac{\partial f}{\partial x_n})}^2\delta_{lim\ x_n}^2} δlim y=(x1f)2δlim x12+(x2f)2δlim x22+...+(xnf)2δlim xn2

3、误差间的相关关系和相关系数

定义相关系数 ρ = K ξ η σ ξ σ η \rho=\frac{K_{\xi\eta}}{\sigma_\xi\sigma_\eta} ρ=σξσηKξη其中 K ξ η K_{\xi\eta} Kξη为误差 ξ \xi ξ η \eta η之间的协方差; σ ξ , σ η \sigma_{\xi},\sigma_{\eta} σξ,ση分别为误差 ξ \xi ξ η \eta η的标准差(-1 ≤ ρ ≤ \le\rho\le ρ+1)

  • 0< ρ \rho ρ<1时, ξ \xi ξ η \eta η正相关,即一误差增大,零一误差取值平均的增大
  • -1< ρ \rho ρ<0时, ξ \xi ξ η \eta η负相关
  • ρ = ± 1 \rho=\pm 1 ρ=±1时,完全正/负相关,此时 ξ \xi ξ η \eta η之间存在着确定的线性函数关系
  • ρ \rho ρ=0,两误差间无线性关系或称不相关

4、随机误差的合成

(1)标准差的合成

σ = ∑ i = 1 q ( a i σ i ) 2 + 2 ∑ 1 ≤ i < j q ρ i j a i a j σ i σ j \sigma=\sqrt{\sum_{i=1}^q(a_i\sigma_i)^2+2\sum_{1\le i<j}^{q}\rho_{ij}a_ia_j\sigma_i\sigma_j} σ=i=1q(aiσi)2+21i<jqρijaiajσiσj 其中 a i a_i ai为误差传递系数

(2)极限误差的合成

一般的极限误差合成公式 δ = ± t ∑ i = 1 q ( a i δ i t i ) 2 + 2 ∑ 1 ≤ i < j q ρ i j a i a j δ i t i δ j t j \delta=\pm t\sqrt{\sum_{i=1}^q(\frac{a_i\delta_i}{t_i})^2+2\sum_{1\le i<j}^{q}\rho_{ij}a_ia_j\frac{\delta_i}{t_i}\frac{\delta_j}{t_j}} δ=±ti=1q(tiaiδi)2+21i<jqρijaiajtiδitjδj
若各个单项随机误差均服从正态分布,则 δ = ± ∑ i = 1 q ( a i δ i t i ) 2 + 2 ∑ 1 ≤ i < j q ρ i j a i a j δ i t i δ j t j \delta=\pm \sqrt{\sum_{i=1}^q(\frac{a_i\delta_i}{t_i})^2+2\sum_{1\le i<j}^{q}\rho_{ij}a_ia_j\frac{\delta_i}{t_i}\frac{\delta_j}{t_j}} δ=±i=1q(tiaiδi)2+21i<jqρijaiajtiδitjδj

5、系统误差的合成

(1)已定系统误差的合成

△ = ∑ i = 1 r a i △ i \bigtriangleup=\sum_{i=1}^{r}a_i\bigtriangleup_i =i=1raii其中该测量过程共 r r r个单项一定系差, △ i \bigtriangleup_i i为误差值, a i a_i ai为相应的误差传递函数

(2)未定系统误差的合成

标准差的合成
若测量过程中有 s s s个单项未定系统误差,其标准差为 u i u_i ui,其相应的误差传递函数为 a i a_i ai,则合成后未定系差的总标准差为 u = ∑ i = 1 q ( a i u i ) 2 + 2 ∑ 1 ≤ i < j q ρ i j a i a j u i u j u=\sqrt{\sum_{i=1}^q(a_iu_i)^2+2\sum_{1\le i<j}^{q}\rho_{ij}a_ia_ju_iu_j} u=i=1q(aiui)2+21i<jqρijaiajuiuj ρ i j = 0 \rho_{ij}=0 ρij=0时,则 u = ∑ i = 1 q ( a i u i ) 2 u=\sqrt{\sum_{i=1}^q(a_iu_i)^2} u=i=1q(aiui)2
极限误差的合成
单项未定系差的极限误差为 e i = ± t i u i , i = 1 , 2 , . . . , s e_i=\pm t_iu_i, i=1,2,...,s ei=±tiui,i=1,2,...,s总的未定系差的极限误差为 e = ± t u e=\pm tu e=±tu则可得 e = ± t ∑ i = 1 q ( a i u i ) 2 + 2 ∑ 1 ≤ i < j q ρ i j a i a j u i u j e=\pm t\sqrt{\sum_{i=1}^q(a_iu_i)^2+2\sum_{1\le i<j}^{q}\rho_{ij}a_ia_ju_iu_j} e=±ti=1q(aiui)2+21i<jqρijaiajuiuj 当各个单项未定系统误差均服从正态分布,且 ρ i j = 0 \rho_{ij}=0 ρij=0 e = ± ∑ i = 1 s ( a i e i ) 2 e=\pm \sqrt{\sum_{i=1}^{s}(a_ie_i)^2} e=±i=1s(aiei)2

6、系统误差与随机误差的合成

(1)按极限误差合成

若测量过程中有 r r r个单项已定系差, s s s个单项未定系差, q q q个单项随机误差,他们的误差值或极限误差分别为 △ 1 , △ 2 , . . . , △ r \bigtriangleup_1,\bigtriangleup _2,...,\bigtriangleup _r 1,2,...,r e 1 , e 2 , . . . , e s e_1,e_2,...,e_s e1,e2,...,es δ 1 , δ 2 , . . . , δ q \delta_1,\delta _2,...,\delta _q δ1,δ2,...,δq设各个误差传递系数均为1,则测量结果总的极限误差为 △ 总 = ∑ i = 1 r △ i ± t ∑ i = 1 s ( e i t i ) 2 + ∑ i = 1 q ( δ i t i ) 2 + R \bigtriangleup_总=\sum_{i=1}^{r}\bigtriangleup_i\pm t\sqrt{\sum_{i=1}^{s}(\frac{e_i}{t_i})^2+\sum_{i=1}^{q}(\frac{\delta_i}{t_i})^2+R} =i=1ri±ti=1s(tiei)2+i=1q(tiδi)2+R 其中 R R R为各个误差间协方差之和
已定系差修正后 △ 总 = ∑ i = 1 s e i 2 + ∑ i = 1 q δ i 2 (单次测量) \bigtriangleup_总=\sqrt{\sum_{i=1}^{s}{e_i}^2+\sum_{i=1}^{q}{\delta_i}^2}(单次测量) =i=1sei2+i=1qδi2 (单次测量) △ 总 = ∑ i = 1 s e i 2 + 1 n ∑ i = 1 q δ i 2 (多次重复测量) \bigtriangleup_总=\sqrt{\sum_{i=1}^{s}{e_i}^2+\frac{1}{n}\sum_{i=1}^{q}{\delta_i}^2}(多次重复测量) =i=1sei2+n1i=1qδi2 (多次重复测量)

(2)按标准差合成

若测量过程中有 s s s个单项未定系差, q q q个单项随机误差,其标准差为 u 1 , u 2 , . . . , u s u_1,u_2,...,u_s u1,u2,...,us σ 1 , σ 2 , . . . , σ q \sigma_1,\sigma _2,...,\sigma _q σ1,σ2,...,σq设各个误差传递系数均为1,则测量结果总的标准差为 σ = ∑ i = 1 s u i 2 + ∑ i = 1 q σ i 2 + R \sigma=\sqrt{\sum_{i=1}^su_i^2+\sum_{i=1}^q\sigma_i^2+R} σ=i=1sui2+i=1qσi2+R 其中, R R R为各个误差间协方差之和。各个误差间互不相关时 σ = ∑ i = 1 s u i 2 + ∑ i = 1 q σ i 2 (单次测量) \sigma=\sqrt{\sum_{i=1}^su_i^2+\sum_{i=1}^q\sigma_i^2}(单次测量) σ=i=1sui2+i=1qσi2 (单次测量) σ = ∑ i = 1 s u i 2 + 1 n ∑ i = 1 q σ i 2 (多次重复测量) \sigma=\sqrt{\sum_{i=1}^su_i^2+\frac{1}{n}\sum_{i=1}^q\sigma_i^2}(多次重复测量) σ=i=1sui2+n1i=1qσi2 (多次重复测量)

7、微小误差的取舍准则

对于随机误差和未定系差,微小误差舍入准则被舍去的误差必须小于或等于测量结果总标准的1/3~1/10

  • 1/3:一般精度测量
  • 1/10:较精密的测量
  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
误差理论与测量平差基础是测量学中的重要概念。测量中难免会产生误差,包括系统误差和随机误差误差理论就是通过对误差的分析和研究,来确定测量结果的可靠性和准确性的一门学科。 测量平差基础是对测量结果进行调整的过程,通过对各个测量值的分析和比较,将误差调整到最小程度,从而得到更为准确的测量结果。平差可以分为精度平差和权衡平差两种方式。其中精度平差是对各个测量点进行平差,追求测量结果的最小误差;权衡平差是在考虑各个测量点的精度和测量结果的一致性之间进行权衡,以得到相对合理的结果。 误差理论和测量平差基础是测量学的基本理论和方法。测量学是一门研究测量误差及其影响因素、测量方法和测量结果处理的科学,广泛应用于工程测量、地理测量、物理测量等领域。通过误差理论和测量平差基础的学习和掌握,可以提高测量的准确性和可靠性,为科学研究和工程设计提供有力支持。 此外,在现代科技发展的背景下,误差理论与测量平差基础也得到了很大的推动和应用。在大数据、人工智能等领域中,对测量结果的精确性要求越来越高,因此对误差理论和测量平差基础的研究和应用也变得更加重要。 总之,误差理论和测量平差基础是测量学中的基本概念和方法,通过对测量误差的分析和测量结果的调整,可以提高测量的准确性和可靠性,为科学研究和工程设计提供有力支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三天后的承诺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值