EEG脑电信号处理过程中的问题与ITPC指标计算的MATLAB代码

  1. SSVEP产生信号原理
    大脑里分布的各种神经网络都有其固有的谐振频率,在正常状态下,这些神经网络都是互不同步的,也是杂乱无章,没有规律的,此时的脑电信号是自发脑电。当施加一个恒定频率的外界视觉刺激时,与刺激频率或谐波频率相一致的神经网络就会产生谐振,导致大脑的电位活动在刺激频率或谐波频率处出现明显变化,由此产生了SSVEP 信号。

  2. 脑电信号预处理的注意事项
    预处理过程中先插值坏导,剔除坏段后再ICA,如果采用平均参考,重参考应该在插值坏导后进行。 插值坏导应该在滤波和提取epoch之后进行。原因是在进行滤波和epoch提取时,坏导会对数据的频谱特征和时间分布产生影响,可能会导致后续分析结果不准确。因此,在滤波和epoch提取完成后,需要对坏导进行插值来修复数据,以便进行后续的分析处理。
    对数据进行下采样可能会影响amplitude的值变小,因为下采样会降低数据的采样率,从而减少数据中每秒的样本数。这可能导致高频成分被过滤掉,从而降低amplitude的值。因此,在下采样之前应该先确定好下采样的比例和滤波的参数,以确保保留感兴趣的频率范围。同时,需要注意下采样过程中可能引入混叠问题,需要进行适当的滤波和重采样处理。
    缓解频率泄漏的一种常见策略是在傅里叶变换之前对信号乘以平滑窗口。当目标频率一致的情况下,加平滑窗口是不需要的。换句话说,在频率标记法中,数据分析的目的不是估计响应的周期,而是检测具有已知频率的响应的存在。基于信号检测理论(Poor,1998),正弦信号的最佳检测通常涉及计算记录信号和目标信号之间的点积,它可以被视为频率标记范例中的正弦,并且可以使用DFT方便地计算这种点积。

  3. 对于50HZ陷波, iirnotch和butterworth哪个效果好
    iirnotch和butterworth都可以用于50Hz陷波滤波器的设计,但它们的实现方法和性能特点不同。

iirnotch是一种基于二阶IIR滤波器的数字滤波器,它可以非常准确地去除指定频率的信号成分,但它的相位响应是非线性的,可能会引入一些畸变。同时,iirnotch在滤除目标频率附近的信号时,也可能会对其他频率的信号造成影响。

Butterworth是一种基于巴特沃斯极点的数字滤波器,它的相位响应是线性的,不存在相位畸变问题,而且在滤波器设计时可以通过控制阶数来平衡滤波器的抗干扰能力和信号保留能力。但是,Butterworth滤波器对于目标频率附近的信号可能会滤除不完全,会存在一定的波纹和过渡带。

因此,选择iirnotch还是Butterworth主要取决于你的数据特征和应用场景。如果你的数据中有非常强的50Hz噪声成分,且需要高精度的滤波效果,可以选择iirnotch;如果你的数据中50Hz噪声成分相对较弱,或者需要保留目标频率附近的其他频率成分,可以选择Butterworth。在植物人数据中,陷波滤波器旨在去除电源线频率(50Hz或60Hz)的噪声,以避免在信号中引入人为噪声。对于50Hz陷波,iirnotch和butterworth两者都可以起到陷波的作用。但是,由于iirnotch滤波器在陷波时会产生一些相位延迟,因此在需要保留信号相位信息的情况下,建议使用Butterworth滤波器进行50Hz陷波。但是,在需要快速去除50Hz噪声的情况下,iirnotch滤波器可以更快地达到稳态。因此,选择哪种滤波器应该根据具体应用场景进行综合考虑。

  1. 什么是交流信号,什么是直流分量
    在电子学中,信号可以分为交流信号和直流信号。
    交流信号是指频率变化的电信号,其电压或电流会随着时间的变化而周期性地交替正负。脑电信号就是一种交流信号,它是由脑部神经元的活动引起的微弱电流所产生的。交流信号通常用频率、振幅、相位等来描述。
    直流信号是指电压或电流恒定不变的信号,它没有周期性的变化。直流信号通常被视为交流信号的一种特殊情况,即频率为0 Hz的交流信号。直流信号在电子工程中具有广泛的应用,例如在直流电源、电池等电路中使用。
    在脑电图中,直流分量通常指脑电信号在0 Hz处的振幅,也称为直流偏移。由于脑电信号是交流信号,因此在理想情况下,直流分量应该为0。但在某些情况下,如电极的不稳定、患者的头部姿势不稳定等因素的影响下,可能会导致直流偏移的存在。因此,在解读脑电图结果时,需要特别注意直流分量的影响,并进行相应的校正。

  2. 频谱peak值检测
    频谱峰值总是反映重复率,信号的变化率可以对应于频谱中的低谷。在频率标记范例中,目标频率是刺激特征或序列结构重复的频率,通常与特征或结构持续多长时间或其在每个周期内变化的速度无关。

  3. EEG相干性分析
    EEG相干分析时,一般将实验任务时的相干与无任务时基线水平的相干进行比较,指标包括相干系数和相干变化的区域。比如,在两种实验条件下,其相干系数与无任务时基线水平的相干系数相比都有显著增加,但是实验条件一比条件二的增加的相干值更多,则表明条件一的相干系数高于条件二;如果对于某一相干区域,在实验条件一下,其相干系数与无任务时基线水平的相干系数相比有显著增加,而实验条件二没有显著增加,则表明实验条件一的相干区域多于实验条件二。相干系数一般反映了加工难度的变化,而相干变化的区域则表明参与相应认知加工过程的脑区的变化。在 EEG语言相干分析的研究中,主要从三个方面进行考察:第一,一般认知过程,指所有词语加工时都会涉及到的加工过程,比如感觉、注意等;第二,语法加工,指对词语的动词名词属性的加工;第三,语义加工,主要涉及词语所传达的意义。
    要计算预处理脑电图数据的试验间相位相干性 (ITPC),您可以按照以下步骤操作:

为您的分析选择感兴趣的时频窗口。
将 EEG 数据划分为多个时期,通常持续时间约为 1 到 2 秒。
应用时频分解方法,如 Morlet 小波变换或傅立叶变换,以获得每个时期的复谱系数。
对于每个感兴趣的频率和时间点,计算每个电极试验的平均相位角。
计算每个电极的合成矢量长度 (R),它代表 ITPC。 这可以通过对每个电极的试验中相位角的复指数求和并除以试验次数来完成。 该结果的绝对值是该电极和频率/时间点的 ITPC。
对所有感兴趣的频率和时间点重复步骤 4 和 5。
值得注意的是,计算 ITPC 的方法有很多种,具体使用哪种方法可能取决于你的研究问题和你使用的具体数据分析软件。 此外,在进行分析时,请务必考虑任何相关的预处理步骤,例如伪影抑制和参考电极选择。
这里给出我计算ITPC的代码以供参考:

% Define the sampling rate of your data, which is usually given in Hz.
% 
% Compute the Fourier transform of your data along the time dimension using the fft function in MATLAB. This will give you the complex values of the Fourier coefficients.
% 
% Compute the ITPC for each channel and frequency using the equation: ITPC = abs(mean(exp(1i*angle(data)),3)), where data is the Fourier coefficients for each channel and frequency.
% 
% Identify the frequency bins that correspond to the target frequencies.
% 
% Compute the mean ITPC values for each target frequency by averaging the ITPC values across the corresponding frequency bins.

% % To compute the Fourier transform of your data along the time dimension using the fft function calculate single-sided amplitude spectrum and corresponding frequency values
      L = length(EEG.data);
      fourier_coeffs = fft(EEG.data, [], 2);
      P2 = abs(fourier_coeffs/L);
      P1 = P2(1:L/2+1);
      P1(2:end-1) = 2*P1(2:end-1);
      freqs = fs*(0:(L/2))/L;
% % Compute ITPC for each channel and frequency where angle returns the complex argument (or phase angle) of each Fourier coefficient, exp raises Euler's number e to the power of the phase angle to obtain a complex number on the unit circle,mean computes the mean across trials, and abs takes the absolute value to obtain the ITPC
      itpc = abs(mean(exp(1i*angle(fourier_coeffs)), 3));
  1. 做出的频谱图,为什么患者在0HZ处对应幅值比健康人要高
    在脑电图中,频谱图上的0 Hz表示直流分量或直流偏移。直流分量是指电信号中的平均值或偏移值,通常是0 Hz处的振幅。正常情况下,人的大脑不应该有0 Hz的脑电活动,因为脑电活动是交流的。但是,当大脑出现异常情况,如受到重创或损伤时,可能会导致直流分量的变化,即出现直流偏移。在植物人的情况下,他们的大脑处于一种极度不活跃的状态,这意味着他们的脑电信号几乎没有变化。因此,他们的频谱图上可能会显示出一个非常高的幅值峰值,该峰值位于0 Hz处。这是因为直流分量的变化,可能是由于大脑对外部刺激的反应非常有限或不存在导致的。
    需要注意的是,频谱图并不能直接说明植物人大脑的活动状态,因为它只是一种关于脑电活动的静态图像,无法反映出脑电活动的动态变化。

  2. 那如何避免这类患者在0hz处幅值过高
    脑创伤患者在脑电图中的0 Hz处的幅值过高可能有多种原因,包括电极接触不良、头皮的不稳定、环境噪声等。因此,在记录脑电信号时,应该注意以下几点:
    电极的接触质量:电极接触不良会导致脑电信号中包含大量的环境噪声或者直流偏移,影响数据的质量。因此,在记录脑电信号时,应该尽量确保电极与头皮之间的接触良好,并在必要时更换电极。
    头皮的状态:头皮不稳定也可能导致脑电信号中包含大量的环境噪声或者直流偏移。因此,在记录脑电信号时,应该尽量让患者保持头部稳定,可以使用头枕等辅助工具来固定头部。
    数据处理的参数设置:对于脑电信号数据的处理,需要根据具体情况设置合适的参数,例如滤波器的截止频率等。合理的数据处理可以降低环境噪声和直流偏移的影响,提高信号质量。
    需要注意的是,植物人的脑电信号本身的特点也会影响到0 Hz处的幅值。由于植物人的大脑处于一种非常低的活跃度状态,因此其脑电信号的振幅较小,但直流偏移可能相对较高。因此,解释植物人脑电图结果时,需要结合患者的临床表现、医学影像等多种检查方法,以全面评估患者的情况。

  3. 在对脑损伤患者的脑电数据进行预处理时,可以采用哪些方法来减少在0Hz上的幅值

去除直流分量:直流分量是指信号中的常量部分,可能会影响整个信号的基线。您可以使用高通滤波器来去除直流分量,通常将截止频率设置为0.5Hz或更高。

采用带阻滤波器:在预处理中,您可以采用带阻滤波器来消除0Hz处的幅值。带阻滤波器可以通过在0-1Hz和1.5-5Hz之间设置两个截止频率来消除这些幅值。

使用基线校正:基线校正是指将信号的平均值移动到0的过程。通过在信号的每个时间点减去信号的平均值,可以减少在0Hz上的幅值。

采用谐波滤波器:谐波滤波器可以将信号中的低频部分削弱,以减少在0Hz上的幅值。该方法的原理是信号在某些频率上存在谐波关系,因此通过削弱低频信号可以减少在0Hz上的幅值。

需要注意的是,对于每种预处理方法,需要根据具体的数据和实验目的进行选择和调整。

  1. 除此之外,低频成分比较多考虑使用重参考电极的选择
    选择双侧乳突重参考可能会产生较大的低频干扰
    双侧乳突参考是一种局部参考,只考虑头皮上局部区域的电势变化,而且乳突位置靠近颈部,处于头皮下静脉窦区域,该区域常常会受到脑内低频血管脉动等生理噪声的影响,这些噪声通常表现为低频成分的波动。因此,使用双侧乳突参考时,低频成分的干扰可能会较大。
    相比之下,全脑平均参考能够平均化头皮上所有电极的电势变化,可以一定程度上抵消掉局部区域的低频干扰。因此,在低频成分较多的情况下,使用全脑平均参考可能更适合。
    需要注意的是,全脑平均参考也有其局限性,因为它无法消除脑外电源的干扰,例如心电图信号和肌电图信号等。因此,选择何种参考需要根据实际情况综合考虑。重参考的时间点通常在预处理的最后阶段进行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值