【OpenCV实战】车牌识别(OCR)中字符分割的两种方法Python实现(总结)

车牌识别是一个经典项目了,车牌的字符分割是很重要的一部分,字符分割的思想在其他项目中同样有很重要的作用。有必要针对字符分割的思路和实现过程做一个记录。
本篇博客的对象是
在这里插入图片描述
目的是实现车牌的字符分割

总的来说

车牌识别的字符分割可以有两种思路:
1基于连通域(边缘特征)的字符分割:通过形态学处理是的各个字符成为一个整体(主要针对汉字),通过边缘检测获取每一个字符的轮廓,即可实现字符分割。
2基于像素直方图的字符分割:对图片进行二值化处理,统计水平方向和竖直方向上各行各列的黑色像素的个数,根据像素的特点确定分割位置,完成字符分割。

1、基于连通域(边缘特征)的字符分割

思路比较简单,根据轮廓特征分割。话不多说,直接上代码

<
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值