深度学习自学记录(3)——两种多分类混淆矩阵的Python实现(含代码)

1、什么是混淆矩阵

深度学习中,混淆矩阵是ROC曲线绘制的基础,同时它也是衡量分类型模型准确度中最基本,最直观,计算最简单的方法。它可以直观地了解分类模型在每一类样本里面表现,常作为模型评估的一部分。它可以非常容易的表明多个类别是否有混淆(也就是一个class被预测成另一个class)
首先要明确几个概念:
T或者F:该样本 是否被正确分类。
P或者N:该样本 原本是正样本还是负样本。
真正例(True Positive,TP):预测正确;模型预测也是正例,样本的真实类别是正例,
真负例(True Negative,TN):预测正确:模型预测为负例,样本的真实类别是负例,
伪正例(False Positive,FP):预测错误:模型预测为正例,样本的真实类别是负例,
伪负例(False Negative,FN):预测错误;模型预测为负例&#x

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值